Module Op


Operators and addressing modes. The abstract syntax and dynamic semantics for the CminorSel, RTL, LTL and Mach languages depend on the following types, defined in this library: These types are processor-specific and correspond roughly to what the processor can compute in one instruction. In other terms, these types reflect the state of the program after instruction selection. For a processor-independent set of operations, see the abstract syntax and dynamic semantics of the Cminor language.

Require Import BoolEqual Coqlib.
Require Import AST Integers Floats.
Require Import Values ExtValues Memory Globalenvs Events.

Set Implicit Arguments.

Conditions (boolean-valued operators).

Inductive condition : Type :=
  | Ccomp (c: comparison) (* signed integer comparison *)
  | Ccompu (c: comparison) (* unsigned integer comparison *)
  | Ccompimm (c: comparison) (n: int) (* signed integer comparison with a constant *)
  | Ccompuimm (c: comparison) (n: int) (* unsigned integer comparison with a constant *)
  | Ccompl (c: comparison) (* signed 64-bit integer comparison *)
  | Ccomplu (c: comparison) (* unsigned 64-bit integer comparison *)
  | Ccomplimm (c: comparison) (n: int64) (* signed 64-bit integer comparison with a constant *)
  | Ccompluimm (c: comparison) (n: int64) (* unsigned 64-bit integer comparison with a constant *)
  | Ccompf (c: comparison) (* 64-bit floating-point comparison *)
  | Cnotcompf (c: comparison) (* negation of a floating-point comparison *)
  | Ccompfs (c: comparison) (* 32-bit floating-point comparison *)
  | Cnotcompfs (c: comparison). (* negation of a floating-point comparison *)

Inductive condition0 : Type :=
  | Ccomp0 (c: comparison) (* signed integer comparison with 0 *)
  | Ccompu0 (c: comparison) (* unsigned integer comparison with 0 *)
  | Ccompl0 (c: comparison) (* signed 64-bit integer comparison with 0 *)
  | Ccomplu0 (c: comparison). (* unsigned 64-bit integer comparison with 0 *)

Definition arg_type_of_condition0 (cond: condition0) :=
  match cond with
  | Ccomp0 _ | Ccompu0 _ => Tint
  | Ccompl0 _ | Ccomplu0 _ => Tlong
  end.

Arithmetic and logical operations. In the descriptions, rd is the result of the operation and r1, r2, etc, are the arguments.

Inductive operation : Type :=
  | Omove (* rd = r1 *)
  | Ocopy (ty : typ) (* rd = r1 but unknown to the optimizations *)
  | Ointconst (n: int) (* rd is set to the given integer constant *)
  | Olongconst (n: int64) (* rd is set to the given integer constant *)
  | Ofloatconst (n: float) (* rd is set to the given float constant *)
  | Osingleconst (n: float32)(* rd is set to the given float constant *)
  | Oaddrsymbol (id: ident) (ofs: ptrofs) (* rd is set to the address of the symbol plus the given offset *)
  | Oaddrstack (ofs: ptrofs) (* rd is set to the stack pointer plus the given offset *)
  | Ocast8signed (* rd is 8-bit sign extension of r1 *)
  | Ocast16signed (* rd is 16-bit sign extension of r1 *)
  | Oadd (* rd = r1 + r2 *)
  | Oaddimm (n: int) (* rd = r1 + n *)
  | Oaddx (shift: shift1_4) (* rd = r1 << shift + r2 *)
  | Oaddximm (shift: shift1_4) (n: int) (* rd = r1 << shift + n *)
  | Oneg (* rd = - r1 *)
  | Osub (* rd = r1 - r2 *)
  | Orevsubimm (n: int) (* rd = n - r1 *)
  | Orevsubx (shift: shift1_4) (* rd = r2 -r1 << shift *)
  | Orevsubximm (shift: shift1_4) (n: int) (* rd = n -r1 << shift *)
  | Omul (* rd = r1 * r2 *)
  | Omulimm (n: int) (* rd = r1 * n *)
  | Omulhs (* rd = high part of r1 * r2, signed *)
  | Omulhu (* rd = high part of r1 * r2, unsigned *)
  | Odiv (* rd = r1 / r2 (signed) *)
  | Odivu (* rd = r1 / r2 (unsigned) *)
  | Omod (* rd = r1 % r2 (signed) *)
  | Omodu (* rd = r1 % r2 (unsigned) *)
  | Oand (* rd = r1 & r2 *)
  | Oandimm (n: int) (* rd = r1 & n *)
  | Onand (* rd = ~(r1 & r2) *)
  | Onandimm (n: int) (* rd = ~(r1 & n) *)
  | Oor (* rd = r1 | r2 *)
  | Oorimm (n: int) (* rd = r1 | n *)
  | Onor (* rd = ~(r1 | r2) *)
  | Onorimm (n: int) (* rd = ~(r1 | n) *)
  | Oxor (* rd = r1 ^ r2 *)
  | Oxorimm (n: int) (* rd = r1 ^ n *)
  | Onxor (* rd = ~(r1 ^ r2) *)
  | Onxorimm (n: int) (* rd = ~(r1 ^ n) *)
  | Onot (* rd = ~r1 *)
  | Oandn (* rd = (~r1) & r2 *)
  | Oandnimm (n: int) (* rd = (~r1) & n *)
  | Oorn (* rd = (~r1) | r2 *)
  | Oornimm (n: int) (* rd = (~r1) | n *)
  | Oshl (* rd = r1 << r2 *)
  | Oshlimm (n: int) (* rd = r1 << n *)
  | Oshr (* rd = r1 >>s r2 (signed) *)
  | Oshrimm (n: int) (* rd = r1 >>s n (signed) *)
  | Oshru (* rd = r1 >>u r2 (unsigned) *)
  | Oshruimm (n: int) (* rd = r1 >>x n (unsigned) *)
  | Oshrximm (n: int) (* rd = r1 / 2^n (signed) *)
  | Ororimm (n: int) (* rotate right immediate *)
  | Omadd (* rd = rd + r1 * r2 *)
  | Omaddimm (n: int) (* rd = rd + r1 * imm *)
  | Omsub (* rd = rd - r1 * r2 *)
  | Omakelong (* rd = r1 << 32 | r2 *)
  | Olowlong (* rd = low-word(r1) *)
  | Ohighlong (* rd = high-word(r1) *)
  | Ocast32signed (* rd is 32-bit sign extension of r1 *)
  | Ocast32unsigned (* rd is 32-bit zero extension of r1 *)
  | Oaddl (* rd = r1 + r2 *)
  | Oaddlimm (n: int64) (* rd = r1 + n *)
  | Oaddxl (shift: shift1_4) (* rd = r1 << shift + r2 *)
  | Oaddxlimm (shift: shift1_4) (n: int64) (* rd = r1 << shift + n *)
  | Orevsublimm (n: int64) (* rd = n - r1 *)
  | Orevsubxl (shift: shift1_4) (* rd = r2 -r1 << shift *)
  | Orevsubxlimm (shift: shift1_4) (n: int64) (* rd = n -r1 << shift *)
  | Onegl (* rd = - r1 *)
  | Osubl (* rd = r1 - r2 *)
  | Omull (* rd = r1 * r2 *)
  | Omullimm (n: int64) (* rd = r1 * n *)
  | Omullhs (* rd = high part of r1 * r2, signed *)
  | Omullhu (* rd = high part of r1 * r2, unsigned *)
  | Odivl (* rd = r1 / r2 (signed) *)
  | Odivlu (* rd = r1 / r2 (unsigned) *)
  | Omodl (* rd = r1 % r2 (signed) *)
  | Omodlu (* rd = r1 % r2 (unsigned) *)
  | Oandl (* rd = r1 & r2 *)
  | Oandlimm (n: int64) (* rd = r1 & n *)
  | Onandl (* rd = ~(r1 & r2) *)
  | Onandlimm (n: int64) (* rd = ~(r1 & n) *)
  | Oorl (* rd = r1 | r2 *)
  | Oorlimm (n: int64) (* rd = r1 | n *)
  | Onorl (* rd = ~(r1 | r2) *)
  | Onorlimm (n: int64) (* rd = ~(r1 | n) *)
  | Oxorl (* rd = r1 ^ r2 *)
  | Oxorlimm (n: int64) (* rd = r1 ^ n *)
  | Onxorl (* rd = ~(r1 ^ r2) *)
  | Onxorlimm (n: int64) (* rd = ~(r1 ^ n) *)
  | Onotl (* rd = ~r1 *)
  | Oandnl (* rd = (~r1) & r2 *)
  | Oandnlimm (n: int64) (* rd = (~r1) & n *)
  | Oornl (* rd = (~r1) | r2 *)
  | Oornlimm (n: int64) (* rd = (~r1) | n *)
  | Oshll (* rd = r1 << r2 *)
  | Oshllimm (n: int) (* rd = r1 << n *)
  | Oshrl (* rd = r1 >> r2 (signed) *)
  | Oshrlimm (n: int) (* rd = r1 >> n (signed) *)
  | Oshrlu (* rd = r1 >> r2 (unsigned) *)
  | Oshrluimm (n: int) (* rd = r1 >> n (unsigned) *)
  | Oshrxlimm (n: int) (* rd = r1 / 2^n (signed) *)
  | Omaddl (* rd = rd + r1 * r2 *)
  | Omaddlimm (n: int64) (* rd = rd + r1 * imm *)
  | Omsubl (* rd = rd - r1 * r2 *)
  | Onegf (* rd = - r1 *)
  | Oabsf (* rd = abs(r1) *)
  | Oaddf (* rd = r1 + r2 *)
  | Osubf (* rd = r1 - r2 *)
  | Omulf (* rd = r1 * r2 *)
  | Odivf (* rd = r1 / r2 *)
  | Ominf
  | Omaxf
  | Ofmaddf
  | Ofmsubf
  | Onegfs (* rd = - r1 *)
  | Oabsfs (* rd = abs(r1) *)
  | Oaddfs (* rd = r1 + r2 *)
  | Osubfs (* rd = r1 - r2 *)
  | Omulfs (* rd = r1 * r2 *)
  | Odivfs (* rd = r1 / r2 *)
  | Ominfs
  | Omaxfs
  | Oinvfs
  | Ofmaddfs
  | Ofmsubfs
  | Osingleoffloat (* rd is r1 truncated to single-precision float *)
  | Ofloatofsingle (* rd is r1 extended to double-precision float *)
  | Ointoffloat (* rd = signed_int_of_float64(r1) *)
  | Ointuoffloat (* rd = unsigned_int_of_float64(r1) *)
  | Ointofsingle (* rd = signed_int_of_float32(r1) *)
  | Ointuofsingle (* rd = unsigned_int_of_float32(r1) *)
  | Osingleofint (* rd = float32_of_signed_int(r1) *)
  | Osingleofintu (* rd = float32_of_unsigned_int(r1) *)
  | Olongoffloat (* rd = signed_long_of_float64(r1) *)
  | Olonguoffloat (* rd = unsigned_long_of_float64(r1) *)
  | Ofloatoflong (* rd = float64_of_signed_long(r1) *)
  | Ofloatoflongu (* rd = float64_of_unsigned_long(r1) *)
  | Olongofsingle (* rd = signed_long_of_float32(r1) *)
  | Olonguofsingle (* rd = unsigned_long_of_float32(r1) *)
  | Osingleoflong (* rd = float32_of_signed_long(r1) *)
  | Osingleoflongu (* rd = float32_of_unsigned_int(r1) *)
  | Ointofsingle_ne (* rd = signed_int_of_float64(r1) *)
  | Ointuofsingle_ne (* rd = unsigned_int_of_float64(r1) *)
  | Olongoffloat_ne (* rd = signed_long_of_float64(r1) *)
  | Olonguoffloat_ne (* rd = unsigned_long_of_float64(r1) *)

  | Ocmp (cond: condition) (* rd = 1 if condition holds, rd = 0 otherwise. *)
  | Oextfz (stop : Z) (start : Z)
  | Oextfs (stop : Z) (start : Z)
  | Oextfzl (stop : Z) (start : Z)
  | Oextfsl (stop : Z) (start : Z)
  | Oinsf (stop : Z) (start : Z)
  | Oinsfl (stop : Z) (start : Z)
  | Osel (c0 : condition0) (ty : typ)
  | Oselimm (c0 : condition0) (imm: int)
  | Osellimm (c0 : condition0) (imm: int64)
  | Oabsdiff
  | Oabsdiffimm (imm: int)
  | Oabsdiffl
  | Oabsdifflimm (imm: int64).

Addressing modes. r1, r2, etc, are the arguments to the addressing.

Inductive addressing: Type :=
  | Aindexed2XS (scale : Z) : addressing (* Address is r1 + r2 << scale *)
  | Aindexed2 : addressing (* Address is r1 + r2 *)
  | Aindexed: ptrofs -> addressing (* Address is r1 + offset *)
  | Aglobal: ident -> ptrofs -> addressing (* Address is global plus offset *)
  | Ainstack: ptrofs -> addressing. (* Address is stack_pointer + offset *)

Comparison functions (used in modules CSE and Allocation).

Definition eq_condition (x y: condition) : {x=y} + {x<>y}.
Proof.
  generalize Int.eq_dec Int64.eq_dec; intro.
  assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality.
  decide equality.
Defined.

Definition eq_condition0 (x y: condition0) : {x=y} + {x<>y}.
Proof.
  generalize Int.eq_dec Int64.eq_dec; intro.
  assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality.
  decide equality.
Defined.

Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}.
Proof.
  generalize ident_eq Ptrofs.eq_dec Z.eq_dec; intros.
  decide equality.
Defined.

Definition eq_shift1_4 (x y : shift1_4): {x=y} + {x<>y}.
Proof.
  decide equality.
Defined.

Definition eq_operation: forall (x y: operation), {x=y} + {x<>y}.
Proof.
  generalize typ_eq Int.eq_dec Int64.eq_dec Ptrofs.eq_dec Float.eq_dec Float32.eq_dec ident_eq eq_condition eq_condition0 Z.eq_dec eq_shift1_4; intros.
  decide equality.
Defined.


Global Opaque eq_condition eq_addressing eq_operation.

Evaluation functions


Evaluation of conditions, operators and addressing modes applied to lists of values. Return None when the computation can trigger an error, e.g. integer division by zero. eval_condition returns a boolean, eval_operation and eval_addressing return a value.
 
Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool :=
  match cond, vl with
  | Ccomp c, v1 :: v2 :: nil => Val.cmp_bool c v1 v2
  | Ccompu c, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 v2
  | Ccompimm c n, v1 :: nil => Val.cmp_bool c v1 (Vint n)
  | Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n)
  | Ccompl c, v1 :: v2 :: nil => Val.cmpl_bool c v1 v2
  | Ccomplu c, v1 :: v2 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 v2
  | Ccomplimm c n, v1 :: nil => Val.cmpl_bool c v1 (Vlong n)
  | Ccompluimm c n, v1 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 (Vlong n)
  | Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2
  | Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2)
  | Ccompfs c, v1 :: v2 :: nil => Val.cmpfs_bool c v1 v2
  | Cnotcompfs c, v1 :: v2 :: nil => option_map negb (Val.cmpfs_bool c v1 v2)
  | _, _ => None
  end.
 
Definition eval_condition0 (cond: condition0) (v1: val) (m: mem): option bool :=
  match cond with
  | Ccomp0 c => Val.cmp_bool c v1 (Vint Int.zero)
  | Ccompu0 c => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint Int.zero)
  | Ccompl0 c => Val.cmpl_bool c v1 (Vlong Int64.zero)
  | Ccomplu0 c => Val.cmplu_bool (Mem.valid_pointer m) c v1 (Vlong Int64.zero)
  end.

Definition negate_condition0 (cond0 : condition0) : condition0 :=
  match cond0 with
  | Ccomp0 c => Ccomp0 (negate_comparison c)
  | Ccompu0 c => Ccompu0 (negate_comparison c)
  | Ccompl0 c => Ccompl0 (negate_comparison c)
  | Ccomplu0 c => Ccomplu0 (negate_comparison c)
  end.

Definition eval_operation
    (F V: Type) (genv: Genv.t F V) (sp: val)
    (op: operation) (vl: list val) (m: mem): option val :=
  match op, vl with
  | Omove, v1::nil => Some v1
  | Ocopy ty, v1::v2::nil => Some (Val.normalize v1 ty)
  | Ointconst n, nil => Some (Vint n)
  | Olongconst n, nil => Some (Vlong n)
  | Ofloatconst n, nil => Some (Vfloat n)
  | Osingleconst n, nil => Some (Vsingle n)
  | Oaddrsymbol s ofs, nil => Some (Genv.symbol_address genv s ofs)
  | Oaddrstack ofs, nil => Some (Val.offset_ptr sp ofs)
  | Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1)
  | Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1)
  | Oadd, v1 :: v2 :: nil => Some (Val.add v1 v2)
  | Oaddimm n, v1 :: nil => Some (Val.add v1 (Vint n))
  | Oaddx s14, v1 :: v2 :: nil => Some (addx (int_of_shift1_4 s14) v1 v2)
  | Oaddximm s14 n, v1 :: nil => Some (addx (int_of_shift1_4 s14) v1 (Vint n))
  | Oneg, v1 :: nil => Some (Val.neg v1)
  | Osub, v1 :: v2 :: nil => Some (Val.sub v1 v2)
  | Orevsubimm n, v1 :: nil => Some (Val.sub (Vint n) v1)
  | Orevsubx shift, v1 :: v2 :: nil => Some (ExtValues.revsubx (int_of_shift1_4 shift) v1 v2)
  | Orevsubximm shift n, v1 :: nil => Some (ExtValues.revsubx (int_of_shift1_4 shift) v1 (Vint n))
  | Omul, v1 :: v2 :: nil => Some (Val.mul v1 v2)
  | Omulimm n, v1 :: nil => Some (Val.mul v1 (Vint n))
  | Omulhs, v1::v2::nil => Some (Val.mulhs v1 v2)
  | Omulhu, v1::v2::nil => Some (Val.mulhu v1 v2)
  | Odiv, v1 :: v2 :: nil => Val.divs v1 v2
  | Odivu, v1 :: v2 :: nil => Val.divu v1 v2
  | Omod, v1 :: v2 :: nil => Val.mods v1 v2
  | Omodu, v1 :: v2 :: nil => Val.modu v1 v2
  | Oand, v1 :: v2 :: nil => Some (Val.and v1 v2)
  | Oandimm n, v1 :: nil => Some (Val.and v1 (Vint n))
  | Onand, v1 :: v2 :: nil => Some (Val.notint (Val.and v1 v2))
  | Onandimm n, v1 :: nil => Some (Val.notint (Val.and v1 (Vint n)))
  | Oor, v1 :: v2 :: nil => Some (Val.or v1 v2)
  | Oorimm n, v1 :: nil => Some (Val.or v1 (Vint n))
  | Onor, v1 :: v2 :: nil => Some (Val.notint (Val.or v1 v2))
  | Onorimm n, v1 :: nil => Some (Val.notint (Val.or v1 (Vint n)))
  | Oxor, v1 :: v2 :: nil => Some (Val.xor v1 v2)
  | Oxorimm n, v1 :: nil => Some (Val.xor v1 (Vint n))
  | Onxor, v1 :: v2 :: nil => Some (Val.notint (Val.xor v1 v2))
  | Onxorimm n, v1 :: nil => Some (Val.notint (Val.xor v1 (Vint n)))
  | Onot, v1 :: nil => Some (Val.notint v1)
  | Oandn, v1 :: v2 :: nil => Some (Val.and (Val.notint v1) v2)
  | Oandnimm n, v1 :: nil => Some (Val.and (Val.notint v1) (Vint n))
  | Oorn, v1 :: v2 :: nil => Some (Val.or (Val.notint v1) v2)
  | Oornimm n, v1 :: nil => Some (Val.or (Val.notint v1) (Vint n))
  | Oshl, v1 :: v2 :: nil => Some (Val.shl v1 v2)
  | Oshlimm n, v1 :: nil => Some (Val.shl v1 (Vint n))
  | Oshr, v1 :: v2 :: nil => Some (Val.shr v1 v2)
  | Oshrimm n, v1 :: nil => Some (Val.shr v1 (Vint n))
  | Ororimm n, v1 :: nil => Some (Val.ror v1 (Vint n))
  | Oshru, v1 :: v2 :: nil => Some (Val.shru v1 v2)
  | Oshruimm n, v1 :: nil => Some (Val.shru v1 (Vint n))
  | Oshrximm n, v1::nil => Some (Val.maketotal (Val.shrx v1 (Vint n)))
  | Omadd, v1::v2::v3::nil => Some (Val.add v1 (Val.mul v2 v3))
  | (Omaddimm n), v1::v2::nil => Some (Val.add v1 (Val.mul v2 (Vint n)))
  | Omsub, v1::v2::v3::nil => Some (Val.sub v1 (Val.mul v2 v3))
                                     
  | Omakelong, v1::v2::nil => Some (Val.longofwords v1 v2)
  | Olowlong, v1::nil => Some (Val.loword v1)
  | Ohighlong, v1::nil => Some (Val.hiword v1)
  | Ocast32signed, v1 :: nil => Some (Val.longofint v1)
  | Ocast32unsigned, v1 :: nil => Some (Val.longofintu v1)
  | Oaddl, v1 :: v2 :: nil => Some (Val.addl v1 v2)
  | Oaddlimm n, v1::nil => Some (Val.addl v1 (Vlong n))
  | Oaddxl s14, v1 :: v2 :: nil => Some (addxl (int_of_shift1_4 s14) v1 v2)
  | Oaddxlimm s14 n, v1 :: nil => Some (addxl (int_of_shift1_4 s14) v1 (Vlong n))
  | Onegl, v1::nil => Some (Val.negl v1)
  | Osubl, v1::v2::nil => Some (Val.subl v1 v2)
  | Orevsublimm n, v1 :: nil => Some (Val.subl (Vlong n) v1)
  | Orevsubxl shift, v1 :: v2 :: nil => Some (ExtValues.revsubxl (int_of_shift1_4 shift) v1 v2)
  | Orevsubxlimm shift n, v1 :: nil => Some (ExtValues.revsubxl (int_of_shift1_4 shift) v1 (Vlong n))
  | Omull, v1::v2::nil => Some (Val.mull v1 v2)
  | Omullimm n, v1::nil => Some (Val.mull v1 (Vlong n))
  | Omullhs, v1::v2::nil => Some (Val.mullhs v1 v2)
  | Omullhu, v1::v2::nil => Some (Val.mullhu v1 v2)
  | Odivl, v1::v2::nil => Val.divls v1 v2
  | Odivlu, v1::v2::nil => Val.divlu v1 v2
  | Omodl, v1::v2::nil => Val.modls v1 v2
  | Omodlu, v1::v2::nil => Val.modlu v1 v2
  | Oandl, v1::v2::nil => Some(Val.andl v1 v2)
  | Oandlimm n, v1::nil => Some (Val.andl v1 (Vlong n))
  | Onandl, v1::v2::nil => Some(Val.notl (Val.andl v1 v2))
  | Onandlimm n, v1::nil => Some(Val.notl (Val.andl v1 (Vlong n)))
  | Oorl, v1::v2::nil => Some(Val.orl v1 v2)
  | Oorlimm n, v1::nil => Some (Val.orl v1 (Vlong n))
  | Onorl, v1::v2::nil => Some(Val.notl (Val.orl v1 v2))
  | Onorlimm n, v1::nil => Some(Val.notl (Val.orl v1 (Vlong n)))
  | Oxorl, v1::v2::nil => Some(Val.xorl v1 v2)
  | Oxorlimm n, v1::nil => Some (Val.xorl v1 (Vlong n))
  | Onxorl, v1::v2::nil => Some(Val.notl (Val.xorl v1 v2))
  | Onxorlimm n, v1::nil => Some(Val.notl (Val.xorl v1 (Vlong n)))
  | Onotl, v1 :: nil => Some (Val.notl v1)
  | Oandnl, v1 :: v2 :: nil => Some (Val.andl (Val.notl v1) v2)
  | Oandnlimm n, v1 :: nil => Some (Val.andl (Val.notl v1) (Vlong n))
  | Oornl, v1 :: v2 :: nil => Some (Val.orl (Val.notl v1) v2)
  | Oornlimm n, v1 :: nil => Some (Val.orl (Val.notl v1) (Vlong n))
  | Oshll, v1::v2::nil => Some (Val.shll v1 v2)
  | Oshllimm n, v1::nil => Some (Val.shll v1 (Vint n))
  | Oshrl, v1::v2::nil => Some (Val.shrl v1 v2)
  | Oshrlimm n, v1::nil => Some (Val.shrl v1 (Vint n))
  | Oshrlu, v1::v2::nil => Some (Val.shrlu v1 v2)
  | Oshrluimm n, v1::nil => Some (Val.shrlu v1 (Vint n))
  | Oshrxlimm n, v1::nil => Some (Val.maketotal (Val.shrxl v1 (Vint n)))
  | Omaddl, v1::v2::v3::nil => Some (Val.addl v1 (Val.mull v2 v3))
  | (Omaddlimm n), v1::v2::nil => Some (Val.addl v1 (Val.mull v2 (Vlong n)))
  | Omsubl, v1::v2::v3::nil => Some (Val.subl v1 (Val.mull v2 v3))
                                      
  | Onegf, v1::nil => Some (Val.negf v1)
  | Oabsf, v1::nil => Some (Val.absf v1)
  | Oaddf, v1::v2::nil => Some (Val.addf v1 v2)
  | Osubf, v1::v2::nil => Some (Val.subf v1 v2)
  | Omulf, v1::v2::nil => Some (Val.mulf v1 v2)
  | Odivf, v1::v2::nil => Some (Val.divf v1 v2)
  | Ominf, v1::v2::nil => Some (ExtValues.minf v1 v2)
  | Omaxf, v1::v2::nil => Some (ExtValues.maxf v1 v2)
  | Ofmaddf, v1::v2::v3::nil => Some (ExtValues.fmaddf v1 v2 v3)
  | Ofmsubf, v1::v2::v3::nil => Some (ExtValues.fmsubf v1 v2 v3)
                                     
  | Onegfs, v1::nil => Some (Val.negfs v1)
  | Oabsfs, v1::nil => Some (Val.absfs v1)
  | Oaddfs, v1::v2::nil => Some (Val.addfs v1 v2)
  | Osubfs, v1::v2::nil => Some (Val.subfs v1 v2)
  | Omulfs, v1::v2::nil => Some (Val.mulfs v1 v2)
  | Odivfs, v1::v2::nil => Some (Val.divfs v1 v2)
  | Ominfs, v1::v2::nil => Some (ExtValues.minfs v1 v2)
  | Omaxfs, v1::v2::nil => Some (ExtValues.maxfs v1 v2)
  | Oinvfs, v1::nil => Some (ExtValues.invfs v1)
  | Ofmaddfs, v1::v2::v3::nil => Some (ExtValues.fmaddfs v1 v2 v3)
  | Ofmsubfs, v1::v2::v3::nil => Some (ExtValues.fmsubfs v1 v2 v3)
                                      
  | Osingleoffloat, v1::nil => Some (Val.singleoffloat v1)
  | Ofloatofsingle, v1::nil => Some (Val.floatofsingle v1)
  | Ointoffloat, v1::nil => Some (Val.maketotal (Val.intoffloat v1))
  | Ointuoffloat, v1::nil => Some (Val.maketotal (Val.intuoffloat v1))
  | Ointofsingle, v1::nil => Some (Val.maketotal (Val.intofsingle v1))
  | Ointuofsingle, v1::nil => Some (Val.maketotal (Val.intuofsingle v1))
  | Osingleofint, v1::nil => Some (Val.maketotal (Val.singleofint v1))
  | Osingleofintu, v1::nil => Some (Val.maketotal (Val.singleofintu v1))
  | Olongoffloat, v1::nil => Some (Val.maketotal (Val.longoffloat v1))
  | Olonguoffloat, v1::nil => Some (Val.maketotal (Val.longuoffloat v1))
  | Ofloatoflong, v1::nil => Some (Val.maketotal (Val.floatoflong v1))
  | Ofloatoflongu, v1::nil => Some (Val.maketotal (Val.floatoflongu v1))
  | Olongofsingle, v1::nil => Some (Val.maketotal (Val.longofsingle v1))
  | Olonguofsingle, v1::nil => Some (Val.maketotal (Val.longuofsingle v1))
  | Osingleoflong, v1::nil => Some (Val.maketotal (Val.singleoflong v1))
  | Osingleoflongu, v1::nil => Some (Val.maketotal (Val.singleoflongu v1))
  | Ointofsingle_ne, v1::nil => Some (Val.maketotal (Val.intofsingle_ne v1))
  | Ointuofsingle_ne, v1::nil => Some (Val.maketotal (Val.intuofsingle_ne v1))
  | Olongoffloat_ne, v1::nil => Some (Val.maketotal (Val.longoffloat_ne v1))
  | Olonguoffloat_ne, v1::nil => Some (Val.maketotal (Val.longuoffloat_ne v1))
                                    
  | Ocmp c, _ => Some (Val.of_optbool (eval_condition c vl m))
  | (Oextfz stop start), v0::nil => Some (extfz stop start v0)
  | (Oextfs stop start), v0::nil => Some (extfs stop start v0)
  | (Oextfzl stop start), v0::nil => Some (extfzl stop start v0)
  | (Oextfsl stop start), v0::nil => Some (extfsl stop start v0)
  | (Oinsf stop start), v0::v1::nil => Some (insf stop start v0 v1)
  | (Oinsfl stop start), v0::v1::nil => Some (insfl stop start v0 v1)
  | Osel c ty, v1::v2::vc::nil => Some(Val.select (eval_condition0 c vc m) v1 v2 ty)
  | Oselimm c imm, v1::vc::nil => Some(Val.select (eval_condition0 c vc m) v1 (Vint imm) Tint)
  | Osellimm c imm, v1::vc::nil => Some(Val.select (eval_condition0 c vc m) v1 (Vlong imm) Tlong)
  | Oabsdiff, v0::v1::nil => Some(ExtValues.absdiff v0 v1)
  | (Oabsdiffimm n1), v0::nil => Some(ExtValues.absdiff v0 (Vint n1))
  | Oabsdiffl, v0::v1::nil => Some(ExtValues.absdiffl v0 v1)
  | (Oabsdifflimm n1), v0::nil => Some(ExtValues.absdiffl v0 (Vlong n1))
  | _, _ => None
  end.

Definition eval_addressing
    (F V: Type) (genv: Genv.t F V) (sp: val)
    (addr: addressing) (vl: list val) : option val :=
  match addr, vl with
  | Aindexed2XS scale, v1 :: v2 :: nil => Some (Val.addl v1 (Val.shll v2 (Vint (Int.repr scale))))
  | Aindexed2, v1 :: v2 :: nil => Some (Val.addl v1 v2)
  | Aindexed n, v1 :: nil => Some (Val.offset_ptr v1 n)
  | Aglobal s ofs, nil => Some (Genv.symbol_address genv s ofs)
  | Ainstack n, nil => Some (Val.offset_ptr sp n)
  | _, _ => None
  end.

Remark eval_addressing_Ainstack:
  forall (F V: Type) (genv: Genv.t F V) sp ofs,
  eval_addressing genv sp (Ainstack ofs) nil = Some (Val.offset_ptr sp ofs).
Proof.
  intros. reflexivity.
Qed.

Remark eval_addressing_Ainstack_inv:
  forall (F V: Type) (genv: Genv.t F V) sp ofs vl v,
  eval_addressing genv sp (Ainstack ofs) vl = Some v -> vl = nil /\ v = Val.offset_ptr sp ofs.
Proof.
  unfold eval_addressing; intros; destruct vl; inv H; auto.
Qed.

Ltac FuncInv :=
  match goal with
  | H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ =>
      destruct x; cbn in H; FuncInv
  | H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ =>
      destruct v; cbn in H; FuncInv
  | H: (if Archi.ptr64 then _ else _) = Some _ |- _ =>
      destruct Archi.ptr64 eqn:?; FuncInv
  | H: (Some _ = Some _) |- _ =>
      injection H; intros; clear H; FuncInv
  | H: (None = Some _) |- _ =>
      discriminate H
  | _ =>
      idtac
  end.

Static typing of conditions, operators and addressing modes.


Definition type_of_condition (c: condition) : list typ :=
  match c with
  | Ccomp _ => Tint :: Tint :: nil
  | Ccompu _ => Tint :: Tint :: nil
  | Ccompimm _ _ => Tint :: nil
  | Ccompuimm _ _ => Tint :: nil
  | Ccompl _ => Tlong :: Tlong :: nil
  | Ccomplu _ => Tlong :: Tlong :: nil
  | Ccomplimm _ _ => Tlong :: nil
  | Ccompluimm _ _ => Tlong :: nil
  | Ccompf _ => Tfloat :: Tfloat :: nil
  | Cnotcompf _ => Tfloat :: Tfloat :: nil
  | Ccompfs _ => Tsingle :: Tsingle :: nil
  | Cnotcompfs _ => Tsingle :: Tsingle :: nil
  end.

Definition type_of_operation (op: operation) : list typ * typ :=
  match op with
  | Omove => (nil, Tint)
  | Ocopy ty => (ty :: Tint :: nil, ty)
  | Ointconst _ => (nil, Tint)
  | Olongconst _ => (nil, Tlong)
  | Ofloatconst f => (nil, Tfloat)
  | Osingleconst f => (nil, Tsingle)
  | Oaddrsymbol _ _ => (nil, Tptr)
  | Oaddrstack _ => (nil, Tptr)
  | Ocast8signed => (Tint :: nil, Tint)
  | Ocast16signed => (Tint :: nil, Tint)
  | Oadd => (Tint :: Tint :: nil, Tint)
  | Oaddimm _ => (Tint :: nil, Tint)
  | Oaddx _ => (Tint :: Tint :: nil, Tint)
  | Oaddximm _ _ => (Tint :: nil, Tint)
  | Oneg => (Tint :: nil, Tint)
  | Osub => (Tint :: Tint :: nil, Tint)
  | Orevsubimm _ => (Tint :: nil, Tint)
  | Orevsubx _ => (Tint :: Tint :: nil, Tint)
  | Orevsubximm _ _ => (Tint :: nil, Tint)
  | Omul => (Tint :: Tint :: nil, Tint)
  | Omulimm _ => (Tint :: nil, Tint)
  | Omulhs => (Tint :: Tint :: nil, Tint)
  | Omulhu => (Tint :: Tint :: nil, Tint)
  | Odiv => (Tint :: Tint :: nil, Tint)
  | Odivu => (Tint :: Tint :: nil, Tint)
  | Omod => (Tint :: Tint :: nil, Tint)
  | Omodu => (Tint :: Tint :: nil, Tint)
  | Oand => (Tint :: Tint :: nil, Tint)
  | Oandimm _ => (Tint :: nil, Tint)
  | Onand => (Tint :: Tint :: nil, Tint)
  | Onandimm _ => (Tint :: nil, Tint)
  | Oor => (Tint :: Tint :: nil, Tint)
  | Oorimm _ => (Tint :: nil, Tint)
  | Onor => (Tint :: Tint :: nil, Tint)
  | Onorimm _ => (Tint :: nil, Tint)
  | Oxor => (Tint :: Tint :: nil, Tint)
  | Oxorimm _ => (Tint :: nil, Tint)
  | Onxor => (Tint :: Tint :: nil, Tint)
  | Onxorimm _ => (Tint :: nil, Tint)
  | Onot => (Tint :: nil, Tint)
  | Oandn => (Tint :: Tint :: nil, Tint)
  | Oandnimm _ => (Tint :: nil, Tint)
  | Oorn => (Tint :: Tint :: nil, Tint)
  | Oornimm _ => (Tint :: nil, Tint)
  | Oshl => (Tint :: Tint :: nil, Tint)
  | Oshlimm _ => (Tint :: nil, Tint)
  | Oshr => (Tint :: Tint :: nil, Tint)
  | Oshrimm _ => (Tint :: nil, Tint)
  | Oshru => (Tint :: Tint :: nil, Tint)
  | Oshruimm _ => (Tint :: nil, Tint)
  | Oshrximm _ => (Tint :: nil, Tint)
  | Ororimm _ => (Tint :: nil, Tint)
  | Omadd => (Tint :: Tint :: Tint :: nil, Tint)
  | Omaddimm _ => (Tint :: Tint :: nil, Tint)
  | Omsub => (Tint :: Tint :: Tint :: nil, Tint)
                   
  | Omakelong => (Tint :: Tint :: nil, Tlong)
  | Olowlong => (Tlong :: nil, Tint)
  | Ohighlong => (Tlong :: nil, Tint)
  | Ocast32signed => (Tint :: nil, Tlong)
  | Ocast32unsigned => (Tint :: nil, Tlong)
  | Oaddl => (Tlong :: Tlong :: nil, Tlong)
  | Oaddlimm _ => (Tlong :: nil, Tlong)
  | Oaddxl _ => (Tlong :: Tlong :: nil, Tlong)
  | Oaddxlimm _ _ => (Tlong :: nil, Tlong)
  | Orevsublimm _ => (Tlong :: nil, Tlong)
  | Orevsubxl _ => (Tlong :: Tlong :: nil, Tlong)
  | Orevsubxlimm _ _ => (Tlong :: nil, Tlong)
  | Onegl => (Tlong :: nil, Tlong)
  | Osubl => (Tlong :: Tlong :: nil, Tlong)
  | Omull => (Tlong :: Tlong :: nil, Tlong)
  | Omullimm _ => (Tlong :: nil, Tlong)
  | Omullhs => (Tlong :: Tlong :: nil, Tlong)
  | Omullhu => (Tlong :: Tlong :: nil, Tlong)
  | Odivl => (Tlong :: Tlong :: nil, Tlong)
  | Odivlu => (Tlong :: Tlong :: nil, Tlong)
  | Omodl => (Tlong :: Tlong :: nil, Tlong)
  | Omodlu => (Tlong :: Tlong :: nil, Tlong)
  | Oandl => (Tlong :: Tlong :: nil, Tlong)
  | Oandlimm _ => (Tlong :: nil, Tlong)
  | Onandl => (Tlong :: Tlong :: nil, Tlong)
  | Onandlimm _ => (Tlong :: nil, Tlong)
  | Oorl => (Tlong :: Tlong :: nil, Tlong)
  | Oorlimm _ => (Tlong :: nil, Tlong)
  | Onorl => (Tlong :: Tlong :: nil, Tlong)
  | Onorlimm _ => (Tlong :: nil, Tlong)
  | Oxorl => (Tlong :: Tlong :: nil, Tlong)
  | Oxorlimm _ => (Tlong :: nil, Tlong)
  | Onxorl => (Tlong :: Tlong :: nil, Tlong)
  | Onxorlimm _ => (Tlong :: nil, Tlong)
  | Onotl => (Tlong :: nil, Tlong)
  | Oandnl => (Tlong :: Tlong :: nil, Tlong)
  | Oandnlimm _ => (Tlong :: nil, Tlong)
  | Oornl => (Tlong :: Tlong :: nil, Tlong)
  | Oornlimm _ => (Tlong :: nil, Tlong)
  | Oshll => (Tlong :: Tint :: nil, Tlong)
  | Oshllimm _ => (Tlong :: nil, Tlong)
  | Oshrl => (Tlong :: Tint :: nil, Tlong)
  | Oshrlimm _ => (Tlong :: nil, Tlong)
  | Oshrlu => (Tlong :: Tint :: nil, Tlong)
  | Oshrluimm _ => (Tlong :: nil, Tlong)
  | Oshrxlimm _ => (Tlong :: nil, Tlong)
  | Omaddl => (Tlong :: Tlong :: Tlong :: nil, Tlong)
  | Omaddlimm _ => (Tlong :: Tlong :: nil, Tlong)
  | Omsubl => (Tlong :: Tlong :: Tlong :: nil, Tlong)

  | Onegf => (Tfloat :: nil, Tfloat)
  | Oabsf => (Tfloat :: nil, Tfloat)
  | Oaddf
  | Osubf
  | Omulf
  | Odivf
  | Ominf
  | Omaxf => (Tfloat :: Tfloat :: nil, Tfloat)
  | Ofmaddf | Ofmsubf => (Tfloat :: Tfloat :: Tfloat :: nil, Tfloat)

  | Onegfs => (Tsingle :: nil, Tsingle)
  | Oabsfs => (Tsingle :: nil, Tsingle)
  | Oaddfs
  | Osubfs
  | Omulfs
  | Odivfs
  | Ominfs
  | Omaxfs => (Tsingle :: Tsingle :: nil, Tsingle)
  | Oinvfs => (Tsingle :: nil, Tsingle)
  | Ofmaddfs | Ofmsubfs => (Tsingle :: Tsingle :: Tsingle :: nil, Tsingle)

  | Osingleoffloat => (Tfloat :: nil, Tsingle)
  | Ofloatofsingle => (Tsingle :: nil, Tfloat)
  | Ointoffloat => (Tfloat :: nil, Tint)
  | Ointuoffloat => (Tfloat :: nil, Tint)
  | Ointofsingle => (Tsingle :: nil, Tint)
  | Ointuofsingle => (Tsingle :: nil, Tint)
  | Osingleofint => (Tint :: nil, Tsingle)
  | Osingleofintu => (Tint :: nil, Tsingle)
  | Olongoffloat => (Tfloat :: nil, Tlong)
  | Olonguoffloat => (Tfloat :: nil, Tlong)
  | Ofloatoflong => (Tlong :: nil, Tfloat)
  | Ofloatoflongu => (Tlong :: nil, Tfloat)
  | Olongofsingle => (Tsingle :: nil, Tlong)
  | Olonguofsingle => (Tsingle :: nil, Tlong)
  | Osingleoflong => (Tlong :: nil, Tsingle)
  | Osingleoflongu => (Tlong :: nil, Tsingle)

  | Ointofsingle_ne => (Tsingle :: nil, Tint)
  | Ointuofsingle_ne => (Tsingle :: nil, Tint)
  | Olongoffloat_ne => (Tfloat :: nil, Tlong)
  | Olonguoffloat_ne => (Tfloat :: nil, Tlong)
                        
  | Ocmp c => (type_of_condition c, Tint)
  | Oextfz _ _ | Oextfs _ _ => (Tint :: nil, Tint)
  | Oextfzl _ _ | Oextfsl _ _ => (Tlong :: nil, Tlong)
  | Oinsf _ _ => (Tint :: Tint :: nil, Tint)
  | Oinsfl _ _ => (Tlong :: Tlong :: nil, Tlong)
  | Osel c ty => (ty :: ty :: arg_type_of_condition0 c :: nil, ty)
  | Oselimm c ty => (Tint :: arg_type_of_condition0 c :: nil, Tint)
  | Osellimm c ty => (Tlong :: arg_type_of_condition0 c :: nil, Tlong)
  | Oabsdiff => (Tint :: Tint :: nil, Tint)
  | Oabsdiffimm _ => (Tint :: nil, Tint)
  | Oabsdiffl => (Tlong :: Tlong :: nil, Tlong)
  | Oabsdifflimm _ => (Tlong :: nil, Tlong)
  end.

Definition type_of_addressing (addr: addressing) : list typ :=
  match addr with
  | Aindexed2XS _ => Tptr :: Tptr :: nil
  | Aindexed2 => Tptr :: Tptr :: nil
  | Aindexed _ => Tptr :: nil
  | Aglobal _ _ => nil
  | Ainstack _ => nil
  end.

Weak type soundness results for eval_operation: the result values, when defined, are always of the type predicted by type_of_operation.

Section SOUNDNESS.

Variable A V: Type.
Variable genv: Genv.t A V.

Remark type_add:
  forall v1 v2, Val.has_type (Val.add v1 v2) Tint.
Proof.
  intros. unfold Val.has_type, Val.add. destruct Archi.ptr64, v1, v2; auto.
Qed.

Remark type_addl:
  forall v1 v2, Val.has_type (Val.addl v1 v2) Tlong.
Proof.
  intros. unfold Val.has_type, Val.addl. destruct Archi.ptr64, v1, v2; auto.
Qed.

Remark type_sub:
  forall v1 v2, Val.has_type (Val.sub v1 v2) Tint.
Proof.
  intros. unfold Val.has_type, Val.sub. destruct Archi.ptr64, v1, v2; cbn; auto.
  destruct (eq_block _ _); auto.
Qed.

Remark type_subl:
  forall v1 v2, Val.has_type (Val.subl v1 v2) Tlong.
Proof.
  intros. unfold Val.has_type, Val.subl. destruct Archi.ptr64, v1, v2; cbn; auto.
  destruct (eq_block _ _); auto.
Qed.

Remark type_shl:
  forall v1 v2, Val.has_type (Val.shl v1 v2) Tint.
Proof.
  destruct v1, v2; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial.
Qed.

Remark type_shll:
  forall v1 v2, Val.has_type (Val.shll v1 v2) Tlong.
Proof.
  destruct v1, v2; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial.
Qed.

Lemma type_of_operation_sound:
  forall op vl sp v m,
  op <> Omove ->
  eval_operation genv sp op vl m = Some v ->
  Val.has_type v (snd (type_of_operation op)).
Proof with
(try exact I; try reflexivity; auto using Val.Vptr_has_type).
  intros.
  destruct op; cbn; cbn in H0; FuncInv; subst; cbn.
  (* move *)
  - congruence.
  (* copy *)
  - apply Val.normalize_type.
  (* intconst, longconst, floatconst, singleconst *)
  - exact I.
  - exact I.
  - exact I.
  - exact I.
  (* addrsymbol *)
  - unfold Genv.symbol_address. destruct (Genv.find_symbol genv id)...
  (* addrstack *)
  - destruct sp...
  (* castsigned *)
  - destruct v0...
  - destruct v0...
  (* add, addimm *)
  - apply type_add.
  - apply type_add.
  (* addx, addximm *)
  - apply type_add.
  - destruct v0; cbn; trivial.
    destruct (Int.ltu _ _); cbn; trivial.
  (* neg, sub *)
  - destruct v0...
  - apply type_sub.
  (* revsubimm, revsubx, revsubximm *)
  - destruct v0...
  - apply type_sub.
  - destruct v0; cbn; trivial.
    destruct (Int.ltu _ _); cbn; trivial.
  (* mul, mulimm, mulhs, mulhu *)
  - destruct v0; destruct v1...
  - destruct v0...
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* div, divu *)
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (_ || _); inv H2...
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (Int.eq i0 Int.zero); inv H2...
  (* mod, modu *)
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (_ || _); inv H2...
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (Int.eq i0 Int.zero); inv H2...
  (* and, andimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* nand, nandimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* or, orimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* nor, norimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* xor, xorimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* nxor, nxorimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* not *)
  - destruct v0...
  (* andn, andnimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* orn, ornimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* shl, shlimm *)
  - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int.iwordsize)...
  - destruct v0; cbn... destruct (Int.ltu n Int.iwordsize)...
  (* shr, shrimm *)
  - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int.iwordsize)...
  - destruct v0; cbn... destruct (Int.ltu n Int.iwordsize)...
  (* shru, shruimm *)
  - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int.iwordsize)...
  - destruct v0; cbn... destruct (Int.ltu n Int.iwordsize)...
  (* shrx *)
  - destruct v0; cbn... destruct (Int.ltu n (Int.repr 31)); cbn; trivial.
  (* shrimm *)
  - destruct v0; cbn...
  (* madd *)
  - apply type_add.
  - apply type_add.
  (* msub *)
  - apply type_sub.
  (* makelong, lowlong, highlong *)
  - destruct v0; destruct v1...
  - destruct v0...
  - destruct v0...
  (* cast32 *)
  - destruct v0...
  - destruct v0...
  (* addl, addlimm *)
  - apply type_addl.
  - apply type_addl.
  (* addxl addxlimm *)
  - apply type_addl.
  - destruct v0; cbn; trivial.
    destruct (Int.ltu _ _); cbn; trivial.
  (* negl, subl *)
  - destruct v0...
  - apply type_subl.
  - destruct v0; cbn; trivial.
    destruct (Int.ltu _ _); cbn; trivial.
  - destruct v0...
  - apply type_subl.
  (* mull, mullhs, mullhu *)
  - destruct v0; destruct v1...
  - destruct v0...
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* divl, divlu *)
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (_ || _); inv H2...
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (Int64.eq i0 Int64.zero); inv H2...
  (* modl, modlu *)
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (_ || _); inv H2...
  - destruct v0; destruct v1; cbn in *; inv H0.
    destruct (Int64.eq i0 Int64.zero); inv H2...
  (* andl, andlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* nandl, nandlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* orl, orlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* norl, norlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* xorl, xorlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* nxorl, nxorlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* notl *)
  - destruct v0...
  (* andnl, andnlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* ornl, ornlimm *)
  - destruct v0; destruct v1...
  - destruct v0...
  (* shll, shllimm *)
  - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int64.iwordsize')...
  - destruct v0; cbn... destruct (Int.ltu n Int64.iwordsize')...
  (* shr, shrimm *)
  - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int64.iwordsize')...
  - destruct v0; cbn... destruct (Int.ltu n Int64.iwordsize')...
  (* shru, shruimm *)
  - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int64.iwordsize')...
  - destruct v0; cbn... destruct (Int.ltu n Int64.iwordsize')...
  (* shrxl *)
  - destruct v0; cbn... destruct (Int.ltu n (Int.repr 63)); cbn; trivial.
  (* maddl, maddlim *)
  - apply type_addl.
  - apply type_addl.
  (* msubl *)
  - apply type_subl.
  (* negf, absf *)
  - destruct v0...
  - destruct v0...
  (* addf, subf *)
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* mulf, divf *)
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* minf, maxf *)
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* fmaddf, fmsubf *)
  - destruct v0; destruct v1; destruct v2...
  - destruct v0; destruct v1; destruct v2...
  (* negfs, absfs *)
  - destruct v0...
  - destruct v0...
  (* addfs, subfs *)
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* mulfs, divfs *)
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* minfs, maxfs *)
  - destruct v0; destruct v1...
  - destruct v0; destruct v1...
  (* invfs *)
  - destruct v0...
  (* fmaddfs, fmsubfs *)
  - destruct v0; destruct v1; destruct v2...
  - destruct v0; destruct v1; destruct v2...
  (* singleoffloat, floatofsingle *)
  - destruct v0...
  - destruct v0...
  (* intoffloat, intuoffloat *)
  - destruct v0; cbn... destruct (Float.to_int f); cbn; trivial.
  - destruct v0; cbn... destruct (Float.to_intu f); cbn; trivial.
  (* intofsingle, intuofsingle *)
  - destruct v0; cbn... destruct (Float32.to_int f); cbn; trivial.
  - destruct v0; cbn... destruct (Float32.to_intu f); cbn; trivial.
  (* singleofint, singleofintu *)
  - destruct v0; cbn...
  - destruct v0; cbn...
  (* longoffloat, longuoffloat *)
  - destruct v0; cbn... destruct (Float.to_long f); cbn; trivial.
  - destruct v0; cbn... destruct (Float.to_longu f); cbn; trivial.
  (* floatoflong, floatoflongu *)
  - destruct v0; cbn...
  - destruct v0; cbn...
  (* longofsingle, longuofsingle *)
  - destruct v0; cbn... destruct (Float32.to_long f); cbn; trivial.
  - destruct v0; cbn... destruct (Float32.to_longu f); cbn; trivial.
  (* singleoflong, singleoflongu *)
  - destruct v0; cbn...
  - destruct v0; cbn...
  (* intofsingle_ne, intuofsingle_ne *)
  - destruct v0; cbn... destruct (Float32.to_int_ne f); cbn; trivial.
  - destruct v0; cbn... destruct (Float32.to_intu_ne f); cbn; trivial.
  (* longoffloat_ne, longuoffloat_ne *)
  - destruct v0; cbn... destruct (Float.to_long_ne f); cbn; trivial.
  - destruct v0; cbn... destruct (Float.to_longu_ne f); cbn; trivial.
  (* cmp *)
  - destruct (eval_condition cond vl m)... destruct b...
 (* extfz *)
  - unfold extfz.
    destruct (is_bitfield _ _).
    + destruct v0; cbn; trivial.
    + constructor.
 (* extfs *)
  - unfold extfs.
    destruct (is_bitfield _ _).
    + destruct v0; cbn; trivial.
    + constructor.
 (* extfzl *)
  - unfold extfzl.
    destruct (is_bitfieldl _ _).
    + destruct v0; cbn; trivial.
    + constructor.
 (* extfsl *)
  - unfold extfsl.
    destruct (is_bitfieldl _ _).
    + destruct v0; cbn; trivial.
    + constructor.
 (* insf *)
  - unfold insf, bitfield_mask.
    destruct (is_bitfield _ _).
    + destruct v0; destruct v1; cbn; trivial.
      destruct (Int.ltu _ _); cbn; trivial.
    + constructor.
 (* insf *)
  - unfold insfl, bitfield_mask.
    destruct (is_bitfieldl _ _).
    + destruct v0; destruct v1; cbn; trivial.
      destruct (Int.ltu _ _); cbn; trivial.
    + constructor.
 (* Osel *)
  - unfold Val.select. destruct (eval_condition0 _ _ m).
    + apply Val.normalize_type.
    + constructor.
 (* Oselimm *)
  - unfold Val.select. destruct (eval_condition0 _ _ m).
    + apply Val.normalize_type.
    + constructor.
 (* Osellimm *)
  - unfold Val.select. destruct (eval_condition0 _ _ m).
    + apply Val.normalize_type.
    + constructor.
  (* oabsdiff *)
  - destruct v0; destruct v1; cbn; trivial.
  - destruct v0; cbn; trivial.
  - destruct v0; destruct v1; cbn; trivial.
  - destruct v0; cbn; trivial.
Qed.

Definition is_trapping_op (op : operation) :=
  match op with
  | Odiv | Odivl | Odivu | Odivlu
  | Omod | Omodl | Omodu | Omodlu => true
  | _ => false
  end.

Definition args_of_operation op :=
  if eq_operation op Omove
  then 1%nat
  else List.length (fst (type_of_operation op)).

Lemma is_trapping_op_sound:
  forall op vl sp m,
    is_trapping_op op = false ->
    (List.length vl) = args_of_operation op ->
    eval_operation genv sp op vl m <> None.
Proof.
  unfold args_of_operation.
  destruct op; destruct eq_operation; intros; cbn in *; try congruence.
  all: try (destruct vl as [ | vh1 vl1]; try discriminate).
  all: try (destruct vl1 as [ | vh2 vl2]; try discriminate).
  all: try (destruct vl2 as [ | vh3 vl3]; try discriminate).
  all: try (destruct vl3 as [ | vh4 vl4]; try discriminate).
Qed.
End SOUNDNESS.

Manipulating and transforming operations


Recognition of move operations.

Definition is_move_operation
    (A: Type) (op: operation) (args: list A) : option A :=
  match op, args with
  | Omove, arg :: nil => Some arg
  | _, _ => None
  end.

Lemma is_move_operation_correct:
  forall (A: Type) (op: operation) (args: list A) (a: A),
  is_move_operation op args = Some a ->
  op = Omove /\ args = a :: nil.
Proof.
  intros until a. unfold is_move_operation; destruct op;
  try (intros; discriminate).
  destruct args. intros; discriminate.
  destruct args. intros. intuition congruence.
  intros; discriminate.
Qed.

negate_condition cond returns a condition that is logically equivalent to the negation of cond.

Definition negate_condition (cond: condition): condition :=
  match cond with
  | Ccomp c => Ccomp(negate_comparison c)
  | Ccompu c => Ccompu(negate_comparison c)
  | Ccompimm c n => Ccompimm (negate_comparison c) n
  | Ccompuimm c n => Ccompuimm (negate_comparison c) n
  | Ccompl c => Ccompl(negate_comparison c)
  | Ccomplu c => Ccomplu(negate_comparison c)
  | Ccomplimm c n => Ccomplimm (negate_comparison c) n
  | Ccompluimm c n => Ccompluimm (negate_comparison c) n
  | Ccompf c => Cnotcompf c
  | Cnotcompf c => Ccompf c
  | Ccompfs c => Cnotcompfs c
  | Cnotcompfs c => Ccompfs c
  end.

Lemma eval_negate_condition:
  forall cond vl m,
  eval_condition (negate_condition cond) vl m = option_map negb (eval_condition cond vl m).
Proof.
  intros. destruct cond; cbn.
  repeat (destruct vl; auto). apply Val.negate_cmp_bool.
  repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
  repeat (destruct vl; auto). apply Val.negate_cmp_bool.
  repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
  repeat (destruct vl; auto). apply Val.negate_cmpl_bool.
  repeat (destruct vl; auto). apply Val.negate_cmplu_bool.
  repeat (destruct vl; auto). apply Val.negate_cmpl_bool.
  repeat (destruct vl; auto). apply Val.negate_cmplu_bool.
  repeat (destruct vl; auto).
  repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0) as [[]|]; auto.
  repeat (destruct vl; auto).
  repeat (destruct vl; auto). destruct (Val.cmpfs_bool c v v0) as [[]|]; auto.
Qed.

Shifting stack-relative references. This is used in Stacking.

Definition shift_stack_addressing (delta: Z) (addr: addressing) :=
  match addr with
  | Ainstack ofs => Ainstack (Ptrofs.add ofs (Ptrofs.repr delta))
  | _ => addr
  end.

Definition shift_stack_operation (delta: Z) (op: operation) :=
  match op with
  | Oaddrstack ofs => Oaddrstack (Ptrofs.add ofs (Ptrofs.repr delta))
  | _ => op
  end.

Lemma type_shift_stack_addressing:
  forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr.
Proof.
  intros. destruct addr; auto.
Qed.

Lemma type_shift_stack_operation:
  forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op.
Proof.
  intros. destruct op; auto.
Qed.

Lemma eval_shift_stack_addressing:
  forall F V (ge: Genv.t F V) sp addr vl delta,
  eval_addressing ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl =
  eval_addressing ge (Vptr sp (Ptrofs.repr delta)) addr vl.
Proof.
  intros. destruct addr; cbn; auto. destruct vl; auto.
  rewrite Ptrofs.add_zero_l, Ptrofs.add_commut; auto.
Qed.

Lemma eval_shift_stack_operation:
  forall F V (ge: Genv.t F V) sp op vl m delta,
  eval_operation ge (Vptr sp Ptrofs.zero) (shift_stack_operation delta op) vl m =
  eval_operation ge (Vptr sp (Ptrofs.repr delta)) op vl m.
Proof.
  intros. destruct op; cbn; auto. destruct vl; auto.
  rewrite Ptrofs.add_zero_l, Ptrofs.add_commut; auto.
Qed.

Offset an addressing mode addr by a quantity delta, so that it designates the pointer delta bytes past the pointer designated by addr. May be undefined, in which case None is returned.

Definition offset_addressing (addr: addressing) (delta: Z) : option addressing :=
  match addr with
  | Aindexed2 | Aindexed2XS _ => None
  | Aindexed n => Some(Aindexed (Ptrofs.add n (Ptrofs.repr delta)))
  | Aglobal id n => Some(Aglobal id (Ptrofs.add n (Ptrofs.repr delta)))
  | Ainstack n => Some(Ainstack (Ptrofs.add n (Ptrofs.repr delta)))
  end.

Lemma eval_offset_addressing:
  forall (F V: Type) (ge: Genv.t F V) sp addr args delta addr' v,
  offset_addressing addr delta = Some addr' ->
  eval_addressing ge sp addr args = Some v ->
  Archi.ptr64 = false ->
  eval_addressing ge sp addr' args = Some(Val.add v (Vint (Int.repr delta))).
Proof.
  intros.
  assert (A: forall x n,
             Val.offset_ptr x (Ptrofs.add n (Ptrofs.repr delta)) =
             Val.add (Val.offset_ptr x n) (Vint (Int.repr delta))).
  { intros; destruct x; cbn; auto. rewrite H1.
    rewrite Ptrofs.add_assoc. f_equal; f_equal; f_equal. symmetry; auto with ptrofs. }
  destruct addr; cbn in H; inv H; cbn in *; FuncInv; subst.
- rewrite A; auto.
- unfold Genv.symbol_address. destruct (Genv.find_symbol ge i); auto.
  cbn. rewrite H1. f_equal; f_equal; f_equal. symmetry; auto with ptrofs.
- rewrite A; auto.
Qed.

Operations that are so cheap to recompute that CSE should not factor them out.

Definition is_trivial_op (op: operation) : bool :=
  match op with
  | Omove => true
  | Ointconst n => Int.eq (Int.sign_ext 12 n) n
  | Olongconst n => Int64.eq (Int64.sign_ext 12 n) n
  | Oaddrstack _ => true
  | _ => false
  end.

Operations that depend on the memory state.

Definition cond_depends_on_memory (c: condition) : bool :=
  match c with
  | Ccompu _ | Ccompuimm _ _ => negb Archi.ptr64
  | Ccomplu _ | Ccompluimm _ _ => Archi.ptr64
  | _ => false
  end.

Lemma cond_depends_on_memory_correct:
  forall c args m1 m2,
  cond_depends_on_memory c = false ->
  eval_condition c args m1 = eval_condition c args m2.
Proof.
  intros; destruct c; cbn; discriminate || reflexivity.
Qed.

Definition op_depends_on_memory (op: operation) : bool :=
  match op with
  | Ocmp (Ccompu _ | Ccompuimm _ _) => negb Archi.ptr64
  | Ocmp (Ccomplu _ | Ccompluimm _ _) => Archi.ptr64
  
  | Osel (Ccompu0 _) _ | Oselimm (Ccompu0 _) _ | Osellimm (Ccompu0 _) _ => negb Archi.ptr64
  | Osel (Ccomplu0 _) _ | Oselimm (Ccomplu0 _) _ | Osellimm (Ccomplu0 _) _ => Archi.ptr64

  | _ => false
  end.

Lemma op_depends_on_memory_correct:
  forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2,
  op_depends_on_memory op = false ->
  eval_operation ge sp op args m1 = eval_operation ge sp op args m2.
Proof.
  intros until m2. destruct op; cbn; try congruence.
  - destruct cond; cbn; try congruence;
    intros SF; auto; rewrite ? negb_false_iff in SF;
      unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity.
  - destruct c0; cbn; try congruence;
    intros SF; auto; rewrite ? negb_false_iff in SF;
      unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity.
  - destruct c0; cbn; try congruence;
    intros SF; auto; rewrite ? negb_false_iff in SF;
      unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity.
  - destruct c0; cbn; try congruence;
    intros SF; auto; rewrite ? negb_false_iff in SF;
      unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity.
Qed.

Lemma cond_valid_pointer_eq:
  forall cond args m1 m2,
  (forall b z, Mem.valid_pointer m1 b z = Mem.valid_pointer m2 b z) ->
  eval_condition cond args m1 = eval_condition cond args m2.
Proof.
  intros until m2. intro MEM. destruct cond eqn:COND; simpl; try congruence.
  all: repeat (destruct args; simpl; try congruence);
    erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto.
Qed.

Lemma op_valid_pointer_eq:
  forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2,
  (forall b z, Mem.valid_pointer m1 b z = Mem.valid_pointer m2 b z) ->
  eval_operation ge sp op args m1 = eval_operation ge sp op args m2.
Proof.
  intros until m2. destruct op; cbn; try congruence.
  - intros MEM; destruct cond; cbn; try congruence;
    repeat (destruct args; cbn; try congruence);
    erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto.
  - intros MEM; destruct c0; cbn; try congruence;
    repeat (destruct args; cbn; try congruence);
    erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto.
  - intros MEM; destruct c0; cbn; try congruence;
    repeat (destruct args; cbn; try congruence);
    erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto.
  - intros MEM; destruct c0; cbn; try congruence;
    repeat (destruct args; cbn; try congruence);
    erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto.
Qed.

Global variables mentioned in an operation or addressing mode

Definition globals_addressing (addr: addressing) : list ident :=
  match addr with
  | Aglobal s ofs => s :: nil
  | _ => nil
  end.

Definition globals_operation (op: operation) : list ident :=
  match op with
  | Oaddrsymbol s ofs => s :: nil
  | _ => nil
  end.

Invariance and compatibility properties.


eval_operation and eval_addressing depend on a global environment for resolving references to global symbols. We show that they give the same results if a global environment is replaced by another that assigns the same addresses to the same symbols.

Section GENV_TRANSF.

Variable F1 F2 V1 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Hypothesis agree_on_symbols:
  forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.

Lemma eval_addressing_preserved:
  forall sp addr vl,
  eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
Proof.
  intros.
  unfold eval_addressing; destruct addr; auto. destruct vl; auto.
  unfold Genv.symbol_address. rewrite agree_on_symbols; auto.
Qed.

Lemma eval_operation_preserved:
  forall sp op vl m,
  eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m.
Proof.
  intros.
  unfold eval_operation; destruct op; auto. destruct vl; auto.
  unfold Genv.symbol_address. rewrite agree_on_symbols; auto.
Qed.

End GENV_TRANSF.

Compatibility of the evaluation functions with value injections.

Section EVAL_COMPAT.

Variable F1 F2 V1 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Variable f: meminj.

Variable m1: mem.
Variable m2: mem.

Hypothesis valid_pointer_inj:
  forall b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
  Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.

Hypothesis weak_valid_pointer_inj:
  forall b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
  Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.

Hypothesis weak_valid_pointer_no_overflow:
  forall b1 ofs b2 delta,
  f b1 = Some(b2, delta) ->
  Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
  0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned.

Hypothesis valid_different_pointers_inj:
  forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
  b1 <> b2 ->
  Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true ->
  Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true ->
  f b1 = Some (b1', delta1) ->
  f b2 = Some (b2', delta2) ->
  b1' <> b2' \/
  Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2)).

Ltac InvInject :=
  match goal with
  | [ H: Val.inject _ (Vint _) _ |- _ ] =>
      inv H; InvInject
  | [ H: Val.inject _ (Vfloat _) _ |- _ ] =>
      inv H; InvInject
  | [ H: Val.inject _ (Vptr _ _) _ |- _ ] =>
      inv H; InvInject
  | [ H: Val.inject_list _ nil _ |- _ ] =>
      inv H; InvInject
  | [ H: Val.inject_list _ (_ :: _) _ |- _ ] =>
      inv H; InvInject
  | _ => idtac
  end.

Lemma eval_condition_inj:
  forall cond vl1 vl2 b,
  Val.inject_list f vl1 vl2 ->
  eval_condition cond vl1 m1 = Some b ->
  eval_condition cond vl2 m2 = Some b.
Proof.
  intros. destruct cond; cbn in H0; FuncInv; InvInject; cbn; auto.
- inv H3; inv H2; cbn in H0; inv H0; auto.
- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies.
- inv H3; cbn in H0; inv H0; auto.
- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies.
- inv H3; inv H2; cbn in H0; inv H0; auto.
- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies.
- inv H3; cbn in H0; inv H0; auto.
- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies.
- inv H3; inv H2; cbn in H0; inv H0; auto.
- inv H3; inv H2; cbn in H0; inv H0; auto.
- inv H3; inv H2; cbn in H0; inv H0; auto.
- inv H3; inv H2; cbn in H0; inv H0; auto.
Qed.

Lemma eval_condition0_inj:
  forall cond v1 v2 b,
  Val.inject f v1 v2 ->
  eval_condition0 cond v1 m1 = Some b ->
  eval_condition0 cond v2 m2 = Some b.
Proof.
  intros. destruct cond; cbn in H0; FuncInv; InvInject; cbn; auto.
  - inv H; cbn in *; congruence.
  - eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies.
  - inv H; cbn in *; congruence.
  - eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies.
Qed.

Ltac TrivialExists :=
  match goal with
  | [ |- exists v2, Some ?v1 = Some v2 /\ Val.inject _ _ v2 ] =>
      exists v1; split; auto
  | _ => idtac
  end.

Lemma eval_operation_inj:
  forall op sp1 vl1 sp2 vl2 v1,
  (forall id ofs,
      In id (globals_operation op) ->
      Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) ->
  Val.inject f sp1 sp2 ->
  Val.inject_list f vl1 vl2 ->
  eval_operation ge1 sp1 op vl1 m1 = Some v1 ->
  exists v2, eval_operation ge2 sp2 op vl2 m2 = Some v2 /\ Val.inject f v1 v2.
Proof.
  intros until v1; intros GL; intros. destruct op; cbn in H1; cbn; FuncInv; InvInject; TrivialExists.
  (* copy *)
  - apply Val.normalize_inject; assumption.
  (* addrsymbol *)
  - apply GL; cbn; auto.
  (* addrstack *)
  - apply Val.offset_ptr_inject; auto.
  (* castsigned *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* add, addimm *)
  - apply Val.add_inject; auto.
  - apply Val.add_inject; auto.
  (* addx, addximm *)
  - apply Val.add_inject; trivial.
    inv H4; inv H2; cbn; try destruct (Int.ltu _ _); cbn; auto.
  - inv H4; cbn; trivial.
    destruct (Int.ltu _ _); cbn; trivial.
  (* neg, sub *)
  - inv H4; cbn; auto.
  - apply Val.sub_inject; auto.
  (* revsubimm, revsubx, revsubximm *)
  - inv H4; cbn; trivial.
  - apply Val.sub_inject; trivial.
    inv H4; inv H2; cbn; try destruct (Int.ltu _ _); cbn; auto.
  - inv H4; cbn; try destruct (Int.ltu _ _); cbn; auto.
  (* mul, mulimm, mulhs, mulhu *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* div, divu *)
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (_ || _); inv H2.
    TrivialExists.
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
  (* mod, modu *)
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (_ || _); inv H2.
    TrivialExists.
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
  (* and, andimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* nand, nandimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* or, orimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* nor, norimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* xor, xorimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* nxor, nxorimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* not *)
  - inv H4; cbn; auto.
  (* andn, andnimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* orn, ornimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* shl, shlimm *)
  - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
  - inv H4; cbn; auto. destruct (Int.ltu n Int.iwordsize); auto.
  (* shr, shrimm *)
  - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
  - inv H4; cbn; auto. destruct (Int.ltu n Int.iwordsize); auto.
  (* shru, shruimm *)
  - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
  - inv H4; cbn; auto. destruct (Int.ltu n Int.iwordsize); auto.
  (* shrx *)
  - inv H4; cbn; auto.
    destruct (Int.ltu n (Int.repr 31)); inv H; cbn; auto.
  (* rorimm *)
  - inv H4; cbn; auto.
  (* madd, maddim *)
  - inv H2; inv H3; inv H4; cbn; auto.
  - inv H2; inv H4; cbn; auto.
  (* msub *)
  - apply Val.sub_inject; auto.
    inv H3; inv H2; cbn; auto.
  (* makelong, highlong, lowlong *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* cast32 *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* addl, addlimm *)
  - apply Val.addl_inject; auto.
  - apply Val.addl_inject; auto.
  (* addxl, addxlimm *)
  - apply Val.addl_inject; auto.
    inv H4; cbn; trivial.
    destruct (Int.ltu _ _); cbn; trivial.
  - inv H4; cbn; trivial.
    destruct (Int.ltu _ _); cbn; trivial.
  (* negl, subl *)
  - inv H4; cbn; auto.
  - apply Val.subl_inject; auto.
    inv H4; inv H2; cbn; trivial;
    destruct (Int.ltu _ _); cbn; trivial.
  - inv H4; cbn; trivial;
      destruct (Int.ltu _ _); cbn; trivial.
  - inv H4; cbn; auto.
  - apply Val.subl_inject; auto.
  (* mull, mullhs, mullhu *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* divl, divlu *)
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (_ || _); inv H2.
    TrivialExists.
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists.
  (* modl, modlu *)
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (_ || _); inv H2.
    TrivialExists.
  - inv H4; inv H3; cbn in H1; inv H1. cbn.
    destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists.
  (* andl, andlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* nandl, nandlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* orl, orlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* norl, norlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* xorl, xorlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* nxorl, nxorlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* notl *)
  - inv H4; cbn; auto.
  (* andnl, andnlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* ornl, ornlimm *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; cbn; auto.
  (* shll, shllimm *)
  - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
  - inv H4; cbn; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
  (* shr, shrimm *)
  - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
  - inv H4; cbn; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
  (* shru, shruimm *)
  - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
  - inv H4; cbn; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
  (* shrx *)
  - inv H4; cbn; auto.
    destruct (Int.ltu n (Int.repr 63)); cbn; auto.

  (* maddl, maddlimm *)
  - apply Val.addl_inject; auto.
    inv H2; inv H3; inv H4; cbn; auto.
  - apply Val.addl_inject; auto.
    inv H4; inv H2; cbn; auto.
  (* msubl, msublimm *)
  - apply Val.subl_inject; auto.
    inv H2; inv H3; inv H4; cbn; auto.
    
  (* negf, absf *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* addf, subf *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* mulf, divf *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* minf, maxf *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* fmaddf, fmsubf *)
  - inv H4; inv H3; inv H2; cbn; auto.
  - inv H4; inv H3; inv H2; cbn; auto.
  (* negfs, absfs *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* addfs, subfs *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* mulfs, divfs *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* minfs, maxfs *)
  - inv H4; inv H2; cbn; auto.
  - inv H4; inv H2; cbn; auto.
  (* invfs *)
  - inv H4; cbn; auto.
  (* fmaddfs, fmsubfs *)
  - inv H4; inv H3; inv H2; cbn; auto.
  - inv H4; inv H3; inv H2; cbn; auto.
  (* singleoffloat, floatofsingle *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* intoffloat, intuoffloat *)
  - inv H4; cbn; auto. destruct (Float.to_int f0); cbn; auto.
  - inv H4; cbn; auto. destruct (Float.to_intu f0); cbn; auto.
  (* intofsingle, intuofsingle *)
  - inv H4; cbn; auto. destruct (Float32.to_int f0); cbn; auto.
  - inv H4; cbn; auto. destruct (Float32.to_intu f0); cbn; auto.
  (* singleofint, singleofintu *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* longoffloat, longuoffloat *)
  - inv H4; cbn; auto. destruct (Float.to_long f0); cbn; auto.
  - inv H4; cbn; auto. destruct (Float.to_longu f0); cbn; auto.
  (* floatoflong, floatoflongu *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.
  (* longofsingle, longuofsingle *)
  - inv H4; cbn; auto. destruct (Float32.to_long f0); cbn; auto.
  - inv H4; cbn; auto. destruct (Float32.to_longu f0); cbn; auto.
  (* singleoflong, singleoflongu *)
  - inv H4; cbn; auto.
  - inv H4; cbn; auto.

  (* intofsingle_ne, intuofsingle_ne *)
  - inv H4; cbn; auto. destruct (Float32.to_int_ne f0); cbn; auto.
  - inv H4; cbn; auto. destruct (Float32.to_intu_ne f0); cbn; auto.
  (* longoffloat_ne, longuoffloat_ne *)
  - inv H4; cbn; auto. destruct (Float.to_long_ne f0); cbn; auto.
  - inv H4; cbn; auto. destruct (Float.to_longu_ne f0); cbn; auto.
    
  (* cmp *)
  - subst v1. destruct (eval_condition cond vl1 m1) eqn:?.
    exploit eval_condition_inj; eauto. intros EQ; rewrite EQ.
    destruct b; cbn; constructor.
    cbn; constructor.

 (* extfz *)
  - unfold extfz.
    destruct (is_bitfield _ _).
    + inv H4; trivial.
    + trivial.

 (* extfs *)
  - unfold extfs.
    destruct (is_bitfield _ _).
    + inv H4; trivial.
    + trivial.

 (* extfzl *)
  - unfold extfzl.
    destruct (is_bitfieldl _ _).
    + inv H4; trivial.
    + trivial.

 (* extfsl *)
  - unfold extfsl.
    destruct (is_bitfieldl _ _).
    + inv H4; trivial.
    + trivial.

 (* insf *)
  - unfold insf.
    destruct (is_bitfield _ _).
    + inv H4; inv H2; trivial.
      cbn. destruct (Int.ltu _ _); trivial.
      cbn. trivial.
    + trivial.

 (* insfl *)
  - unfold insfl.
    destruct (is_bitfieldl _ _).
    + inv H4; inv H2; trivial.
      cbn. destruct (Int.ltu _ _); trivial.
      cbn. trivial.
    + trivial.

 (* Osel *)
  - apply Val.select_inject; trivial.
    destruct (eval_condition0 c0 v2 m1) eqn:Hcond.
    + right.
      symmetry.
      eapply eval_condition0_inj; eassumption.
    + left. trivial.

 (* Oselimm *)
  - apply Val.select_inject; trivial.
    destruct (eval_condition0 _ _ _) eqn:Hcond.
    + right.
      symmetry.
      eapply eval_condition0_inj; eassumption.
    + left. trivial.

 (* Osellimm *)
  - apply Val.select_inject; trivial.
    destruct (eval_condition0 _ _ _) eqn:Hcond.
    + right.
      symmetry.
      eapply eval_condition0_inj; eassumption.
    + left. trivial.
  (* Oabsdiff *)
  - apply ExtValues.absdiff_inject; trivial.
  - apply ExtValues.absdiff_inject; trivial.
  - apply ExtValues.absdiffl_inject; trivial.
  - apply ExtValues.absdiffl_inject; trivial.
Qed.

Lemma eval_addressing_inj:
  forall addr sp1 vl1 sp2 vl2 v1,
  (forall id ofs,
      In id (globals_addressing addr) ->
      Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) ->
  Val.inject f sp1 sp2 ->
  Val.inject_list f vl1 vl2 ->
  eval_addressing ge1 sp1 addr vl1 = Some v1 ->
  exists v2, eval_addressing ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2.
Proof.
  intros. destruct addr; cbn in H2; cbn; FuncInv; InvInject; TrivialExists.
  - apply Val.addl_inject; trivial.
    destruct v0; destruct v'0; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial; inv H3.
    apply Val.inject_long.
  - apply Val.addl_inject; auto.
  - apply Val.offset_ptr_inject; auto.
  - apply H; cbn; auto.
  - apply Val.offset_ptr_inject; auto.
Qed.

Lemma eval_addressing_inj_none:
  forall addr sp1 vl1 sp2 vl2,
  (forall id ofs,
      In id (globals_addressing addr) ->
      Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) ->
  Val.inject f sp1 sp2 ->
  Val.inject_list f vl1 vl2 ->
  eval_addressing ge1 sp1 addr vl1 = None ->
  eval_addressing ge2 sp2 addr vl2 = None.
Proof.
  intros until vl2. intros Hglobal Hinjsp Hinjvl.
  destruct addr; cbn in *.
  1,2: inv Hinjvl; trivial;
       inv H0; trivial;
       inv H2; trivial;
       discriminate.
  2,3: inv Hinjvl; trivial; discriminate.
  inv Hinjvl; trivial; inv H0; trivial;
    inv H; trivial; discriminate.
Qed.
  
End EVAL_COMPAT.

Compatibility of the evaluation functions with the ``is less defined'' relation over values.

Section EVAL_LESSDEF.

Variable F V: Type.
Variable genv: Genv.t F V.

Remark valid_pointer_extends:
  forall m1 m2, Mem.extends m1 m2 ->
  forall b1 ofs b2 delta,
  Some(b1, 0) = Some(b2, delta) ->
  Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
  Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
Proof.
  intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.valid_pointer_extends; eauto.
Qed.

Remark weak_valid_pointer_extends:
  forall m1 m2, Mem.extends m1 m2 ->
  forall b1 ofs b2 delta,
  Some(b1, 0) = Some(b2, delta) ->
  Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
  Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
Proof.
  intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.weak_valid_pointer_extends; eauto.
Qed.

Remark weak_valid_pointer_no_overflow_extends:
  forall m1 b1 ofs b2 delta,
  Some(b1, 0) = Some(b2, delta) ->
  Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
  0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned.
Proof.
  intros. inv H. rewrite Z.add_0_r. apply Ptrofs.unsigned_range_2.
Qed.

Remark valid_different_pointers_extends:
  forall m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
  b1 <> b2 ->
  Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true ->
  Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true ->
  Some(b1, 0) = Some (b1', delta1) ->
  Some(b2, 0) = Some (b2', delta2) ->
  b1' <> b2' \/
  Ptrofs.unsigned(Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned(Ptrofs.add ofs2 (Ptrofs.repr delta2)).
Proof.
  intros. inv H2; inv H3. auto.
Qed.

Lemma eval_condition_lessdef:
  forall cond vl1 vl2 b m1 m2,
  Val.lessdef_list vl1 vl2 ->
  Mem.extends m1 m2 ->
  eval_condition cond vl1 m1 = Some b ->
  eval_condition cond vl2 m2 = Some b.
Proof.
  intros. eapply eval_condition_inj with (f := fun b => Some(b, 0)) (m1 := m1).
  apply valid_pointer_extends; auto.
  apply weak_valid_pointer_extends; auto.
  apply weak_valid_pointer_no_overflow_extends.
  apply valid_different_pointers_extends; auto.
  rewrite <- val_inject_list_lessdef. eauto. auto.
Qed.

Lemma eval_operation_lessdef:
  forall sp op vl1 vl2 v1 m1 m2,
  Val.lessdef_list vl1 vl2 ->
  Mem.extends m1 m2 ->
  eval_operation genv sp op vl1 m1 = Some v1 ->
  exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
  intros. rewrite val_inject_list_lessdef in H.
  assert (exists v2 : val,
          eval_operation genv sp op vl2 m2 = Some v2
          /\ Val.inject (fun b => Some(b, 0)) v1 v2).
  eapply eval_operation_inj with (m1 := m1) (sp1 := sp).
  apply valid_pointer_extends; auto.
  apply weak_valid_pointer_extends; auto.
  apply weak_valid_pointer_no_overflow_extends.
  apply valid_different_pointers_extends; auto.
  intros. apply val_inject_lessdef. auto.
  apply val_inject_lessdef; auto.
  eauto.
  auto.
  destruct H2 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.

Lemma eval_addressing_lessdef:
  forall sp addr vl1 vl2 v1,
  Val.lessdef_list vl1 vl2 ->
  eval_addressing genv sp addr vl1 = Some v1 ->
  exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
  intros. rewrite val_inject_list_lessdef in H.
  assert (exists v2 : val,
          eval_addressing genv sp addr vl2 = Some v2
          /\ Val.inject (fun b => Some(b, 0)) v1 v2).
  eapply eval_addressing_inj with (sp1 := sp).
  intros. rewrite <- val_inject_lessdef; auto.
  rewrite <- val_inject_lessdef; auto.
  eauto. auto.
  destruct H1 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
Qed.


Lemma eval_addressing_lessdef_none:
  forall sp addr vl1 vl2,
  Val.lessdef_list vl1 vl2 ->
  eval_addressing genv sp addr vl1 = None ->
  eval_addressing genv sp addr vl2 = None.
Proof.
  intros until vl2. intros Hlessdef Heval1.
  destruct addr; cbn in *.
  1, 2, 4, 5: inv Hlessdef; trivial;
  inv H0; trivial;
  inv H2; trivial;
    discriminate.
  inv Hlessdef; trivial.
  inv H0; trivial.
  discriminate.
Qed.
  
End EVAL_LESSDEF.

Compatibility of the evaluation functions with memory injections.

Section EVAL_INJECT.

Variable F V: Type.
Variable genv: Genv.t F V.
Variable f: meminj.
Hypothesis globals: meminj_preserves_globals genv f.
Variable sp1: block.
Variable sp2: block.
Variable delta: Z.
Hypothesis sp_inj: f sp1 = Some(sp2, delta).

Remark symbol_address_inject:
  forall id ofs, Val.inject f (Genv.symbol_address genv id ofs) (Genv.symbol_address genv id ofs).
Proof.
  intros. unfold Genv.symbol_address. destruct (Genv.find_symbol genv id) eqn:?; auto.
  exploit (proj1 globals); eauto. intros.
  econstructor; eauto. rewrite Ptrofs.add_zero; auto.
Qed.

Lemma eval_condition_inject:
  forall cond vl1 vl2 b m1 m2,
  Val.inject_list f vl1 vl2 ->
  Mem.inject f m1 m2 ->
  eval_condition cond vl1 m1 = Some b ->
  eval_condition cond vl2 m2 = Some b.
Proof.
  intros. eapply eval_condition_inj with (f := f) (m1 := m1); eauto.
  intros; eapply Mem.valid_pointer_inject_val; eauto.
  intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
  intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
  intros; eapply Mem.different_pointers_inject; eauto.
Qed.

Lemma eval_addressing_inject:
  forall addr vl1 vl2 v1,
  Val.inject_list f vl1 vl2 ->
  eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = Some v1 ->
  exists v2,
     eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = Some v2
  /\ Val.inject f v1 v2.
Proof.
  intros.
  rewrite eval_shift_stack_addressing.
  eapply eval_addressing_inj with (sp1 := Vptr sp1 Ptrofs.zero); eauto.
  intros. apply symbol_address_inject.
  econstructor; eauto. rewrite Ptrofs.add_zero_l; auto.
Qed.

Lemma eval_addressing_inject_none:
  forall addr vl1 vl2,
  Val.inject_list f vl1 vl2 ->
  eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = None ->
  eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = None.
Proof.
  intros.
  rewrite eval_shift_stack_addressing.
  eapply eval_addressing_inj_none with (sp1 := Vptr sp1 Ptrofs.zero); eauto.
  intros. apply symbol_address_inject.
  econstructor; eauto. rewrite Ptrofs.add_zero_l; auto.
Qed.
  
Lemma eval_operation_inject:
  forall op vl1 vl2 v1 m1 m2,
  Val.inject_list f vl1 vl2 ->
  Mem.inject f m1 m2 ->
  eval_operation genv (Vptr sp1 Ptrofs.zero) op vl1 m1 = Some v1 ->
  exists v2,
     eval_operation genv (Vptr sp2 Ptrofs.zero) (shift_stack_operation delta op) vl2 m2 = Some v2
  /\ Val.inject f v1 v2.
Proof.
  intros.
  rewrite eval_shift_stack_operation. cbn.
  eapply eval_operation_inj with (sp1 := Vptr sp1 Ptrofs.zero) (m1 := m1); eauto.
  intros; eapply Mem.valid_pointer_inject_val; eauto.
  intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
  intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
  intros; eapply Mem.different_pointers_inject; eauto.
  intros. apply symbol_address_inject.
  econstructor; eauto. rewrite Ptrofs.add_zero_l; auto.
Qed.

End EVAL_INJECT.

Handling of builtin arguments


Definition builtin_arg_ok_1
       (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) :=
  match c, ba with
  | OK_all, _ => true
  | OK_const, (BA_int _ | BA_long _ | BA_float _ | BA_single _) => true
  | OK_addrstack, BA_addrstack _ => true
  | OK_addressing, BA_addrstack _ => true
  | OK_addressing, BA_addptr (BA _) (BA_int _) => true
  | OK_addressing, BA_addptr (BA _) (BA_long _) => true
  | _, _ => false
  end.

Definition builtin_arg_ok
       (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) :=
  match ba with
  | (BA _ | BA_splitlong (BA _) (BA _)) => true
  | _ => builtin_arg_ok_1 ba c
  end.