Module SelectLongproof


Correctness of instruction selection for 64-bit integer operations

Require Import String Coqlib Maps Integers Floats Errors.
Require Archi.
Require Import AST Values ExtValues Memory Globalenvs Events.
Require Import Cminor Op CminorSel.
Require Import OpHelpers OpHelpersproof.
Require Import SelectOp SelectOpproof SplitLong SplitLongproof.
Require Import SelectLong.
Require Import DecBoolOps.
Require Import Lia.

Local Open Scope cminorsel_scope.
Local Open Scope string_scope.

Correctness of the instruction selection functions for 64-bit operators


Section CMCONSTR.

Variable prog: program.
Variable hf: helper_functions.
Hypothesis HELPERS: helper_functions_declared prog hf.
Let ge := Genv.globalenv prog.
Variable sp: val.
Variable e: env.
Variable m: mem.

Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop :=
  forall le a x,
  eval_expr ge sp e m le a x ->
  exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v.

Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop :=
  forall le a x b y,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v.

Definition partial_unary_constructor_sound (cstr: expr -> expr) (sem: val -> option val) : Prop :=
  forall le a x y,
  eval_expr ge sp e m le a x ->
  sem x = Some y ->
  exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef y v.

Definition partial_binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> option val) : Prop :=
  forall le a x b y z,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  sem x y = Some z ->
  exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef z v.

Theorem eval_longconst:
  forall le n, eval_expr ge sp e m le (longconst n) (Vlong n).
Proof.
  unfold longconst; intros; destruct Archi.splitlong.
  apply SplitLongproof.eval_longconst.
  EvalOp.
Qed.

Lemma is_longconst_sound:
  forall v a n le,
  is_longconst a = Some n -> eval_expr ge sp e m le a v -> v = Vlong n.
Proof with
(try discriminate).
  intros. unfold is_longconst in *. destruct Archi.splitlong.
  eapply SplitLongproof.is_longconst_sound; eauto.
  assert (a = Eop (Olongconst n) Enil).
  { destruct a... destruct o... destruct e0... congruence. }
  subst a. InvEval. auto.
Qed.

Theorem eval_intoflong: unary_constructor_sound intoflong Val.loword.
Proof.
  unfold intoflong; destruct Archi.splitlong. apply SplitLongproof.eval_intoflong.
  red; intros. destruct (is_longconst a) as [n|] eqn:C.
- TrivialExists. simpl. erewrite (is_longconst_sound x) by eauto. auto.
- TrivialExists.
Qed.

Theorem eval_longofintu: unary_constructor_sound longofintu Val.longofintu.
Proof.
  unfold longofintu; destruct Archi.splitlong. apply SplitLongproof.eval_longofintu.
  red; intros. destruct (is_intconst a) as [n|] eqn:C.
- econstructor; split. apply eval_longconst.
  exploit is_intconst_sound; eauto. intros; subst x. auto.
- TrivialExists.
Qed.

Theorem eval_longofint: unary_constructor_sound longofint Val.longofint.
Proof.
  unfold longofint; destruct Archi.splitlong. apply SplitLongproof.eval_longofint.
  red; intros. destruct (is_intconst a) as [n|] eqn:C.
- econstructor; split. apply eval_longconst.
  exploit is_intconst_sound; eauto. intros; subst x. auto.
- TrivialExists.
Qed.

Theorem eval_negl: unary_constructor_sound negl Val.negl.
Proof.
  unfold negl. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_negl; auto.
  red; intros. destruct (is_longconst a) as [n|] eqn:C.
- exploit is_longconst_sound; eauto. intros EQ; subst x.
  econstructor; split. apply eval_longconst. auto.
- TrivialExists.
Qed.


Theorem eval_addlimm_shllimm:
  forall sh k2, unary_constructor_sound (addlimm_shllimm sh k2) (fun x => ExtValues.addxl sh x (Vlong k2)).
Proof.
  red; unfold addlimm_shllimm; intros.
  destruct (Compopts.optim_addx tt).
  {
  destruct (shift1_4_of_z (Int.unsigned sh)) as [s14 |] eqn:SHIFT.
  - TrivialExists. simpl.
    f_equal.
    unfold shift1_4_of_z, int_of_shift1_4, z_of_shift1_4 in *.
    destruct (Z.eq_dec _ _) as [e1|].
    { replace s14 with SHIFT1 by congruence.
      destruct x; simpl; trivial.
      replace (Int.ltu _ _) with true by reflexivity.
      unfold Int.ltu.
      rewrite e1.
      replace (if zlt _ _ then true else false) with true by reflexivity.
      rewrite <- e1.
      rewrite Int.repr_unsigned.
      reflexivity.
    }
    destruct (Z.eq_dec _ _) as [e2|].
    { replace s14 with SHIFT2 by congruence.
      destruct x; simpl; trivial.
      replace (Int.ltu _ _) with true by reflexivity.
      unfold Int.ltu.
      rewrite e2.
      replace (if zlt _ _ then true else false) with true by reflexivity.
      rewrite <- e2.
      rewrite Int.repr_unsigned.
      reflexivity.
    }
    destruct (Z.eq_dec _ _) as [e3|].
    { replace s14 with SHIFT3 by congruence.
      destruct x; simpl; trivial.
      replace (Int.ltu _ _) with true by reflexivity.
      unfold Int.ltu.
      rewrite e3.
      replace (if zlt _ _ then true else false) with true by reflexivity.
      rewrite <- e3.
      rewrite Int.repr_unsigned.
      reflexivity.
    }
    destruct (Z.eq_dec _ _) as [e4|].
    { replace s14 with SHIFT4 by congruence.
      destruct x; simpl; trivial.
      replace (Int.ltu _ _) with true by reflexivity.
      unfold Int.ltu.
      rewrite e4.
      replace (if zlt _ _ then true else false) with true by reflexivity.
      rewrite <- e4.
      rewrite Int.repr_unsigned.
      reflexivity.
    }
    discriminate.
  - unfold addxl. rewrite Val.addl_commut.
    TrivialExists.
    repeat (try eassumption; try econstructor).
    simpl.
    reflexivity.
  }
  { unfold addxl. rewrite Val.addl_commut.
    TrivialExists.
    repeat (try eassumption; try econstructor).
    simpl.
    reflexivity.
  }
Qed.

Theorem eval_addlimm: forall n, unary_constructor_sound (addlimm n) (fun v => Val.addl v (Vlong n)).
Proof.
  unfold addlimm; intros; red; intros.
  predSpec Int64.eq Int64.eq_spec n Int64.zero.
  subst. exists x; split; auto.
  destruct x; simpl; rewrite ?Int64.add_zero, ?Ptrofs.add_zero; auto.
  destruct (addlimm_match a); InvEval.
- econstructor; split. apply eval_longconst. rewrite Int64.add_commut; auto.
- destruct (Compopts.optim_globaladdroffset _).
  + econstructor; split. EvalOp. simpl; eauto.
    unfold Genv.symbol_address. destruct (Genv.find_symbol ge s); simpl; auto.
    destruct Archi.ptr64; auto. rewrite Ptrofs.add_commut; auto.
  + TrivialExists. repeat econstructor. simpl. trivial.
- econstructor; split. EvalOp. simpl; eauto.
  destruct sp; simpl; auto. destruct Archi.ptr64; auto.
  rewrite Ptrofs.add_assoc, (Ptrofs.add_commut m0). auto.
- subst x. rewrite Val.addl_assoc. rewrite Int64.add_commut. TrivialExists.
- TrivialExists; simpl. subst x.
      destruct v1; simpl; trivial.
      destruct (Int.ltu _ _); simpl; trivial.
      rewrite Int64.add_assoc. rewrite Int64.add_commut.
      reflexivity.
- pose proof eval_addlimm_shllimm as ADDXL.
      unfold unary_constructor_sound in ADDXL.
      unfold addxl in ADDXL.
      rewrite Val.addl_commut.
      subst x.
      apply ADDXL; assumption.
- TrivialExists.
Qed.

Lemma eval_addxl: forall n, binary_constructor_sound (addl_shllimm n) (ExtValues.addxl n).
Proof.
  red.
  intros.
  unfold addl_shllimm.
  destruct (Compopts.optim_addx tt).
  {
  destruct (shift1_4_of_z (Int.unsigned n)) as [s14 |] eqn:SHIFT.
  - TrivialExists.
    simpl.
    f_equal. f_equal.
    unfold shift1_4_of_z, int_of_shift1_4, z_of_shift1_4 in *.
    destruct (Z.eq_dec _ _) as [e1|].
    { replace s14 with SHIFT1 by congruence.
      rewrite <- e1.
      apply Int.repr_unsigned. }
    destruct (Z.eq_dec _ _) as [e2|].
    { replace s14 with SHIFT2 by congruence.
      rewrite <- e2.
      apply Int.repr_unsigned. }
    destruct (Z.eq_dec _ _) as [e3|].
    { replace s14 with SHIFT3 by congruence.
      rewrite <- e3.
      apply Int.repr_unsigned. }
    destruct (Z.eq_dec _ _) as [e4|].
    { replace s14 with SHIFT4 by congruence.
      rewrite <- e4.
      apply Int.repr_unsigned. }
    discriminate.
    (* Oaddxl *)
  - TrivialExists;
      repeat econstructor; eassumption.
  }
  { TrivialExists;
      repeat econstructor; eassumption.
  }
Qed.

Theorem eval_addl: binary_constructor_sound addl Val.addl.
Proof.
  unfold addl. destruct Archi.splitlong eqn:SL.
  apply SplitLongproof.eval_addl. apply Archi.splitlong_ptr32; auto.
(*
  assert (SF: Archi.ptr64 = true).
  { Local Transparent Archi.splitlong. unfold Archi.splitlong in SL. 
    destruct Archi.ptr64; simpl in *; congruence. }  
*)

(*
  assert (B: forall id ofs n,
             Genv.symbol_address ge id (Ptrofs.add ofs (Ptrofs.repr n)) =
             Val.addl (Genv.symbol_address ge id ofs) (Vlong (Int64.repr n))).
  { intros. replace (Ptrofs.repr n) with (Ptrofs.of_int64 (Int64.repr n)) by auto with ptrofs.
    apply Genv.shift_symbol_address_64; auto. }

*)

  red; intros until y.
  case (addl_match a b); intros; InvEval.
  - rewrite Val.addl_commut. apply eval_addlimm; auto.
  - apply eval_addlimm; auto.
  - subst.
    replace (Val.addl (Val.addl v1 (Vlong n1)) (Val.addl v0 (Vlong n2)))
       with (Val.addl (Val.addl v1 v0) (Val.addl (Vlong n1) (Vlong n2))).
    apply eval_addlimm. EvalOp.
    repeat rewrite Val.addl_assoc. decEq. apply Val.addl_permut.
  - subst. econstructor; split.
    EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto.
    rewrite Val.addl_commut. destruct sp; simpl; auto.
    destruct v1; simpl; auto.
    destruct Archi.ptr64 eqn:SF; auto.
    apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal.
    rewrite (Ptrofs.add_commut (Ptrofs.of_int64 n1)), Ptrofs.add_assoc. f_equal. auto with ptrofs.
  - subst. econstructor; split.
    EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto.
    destruct sp; simpl; auto.
    destruct v1; simpl; auto.
    destruct Archi.ptr64 eqn:SF; auto.
    apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal. f_equal.
    rewrite Ptrofs.add_commut. auto with ptrofs.
  - subst.
    replace (Val.addl (Val.addl v1 (Vlong n1)) y)
       with (Val.addl (Val.addl v1 y) (Vlong n1)).
    apply eval_addlimm. EvalOp.
    repeat rewrite Val.addl_assoc. decEq. apply Val.addl_commut.
  - subst.
    replace (Val.addl x (Val.addl v1 (Vlong n2)))
       with (Val.addl (Val.addl x v1) (Vlong n2)).
    apply eval_addlimm. EvalOp.
    repeat rewrite Val.addl_assoc. reflexivity.
  - subst. TrivialExists.
  - subst. rewrite Val.addl_commut. TrivialExists.
  - subst. TrivialExists.
  - subst. rewrite Val.addl_commut. TrivialExists.
  - subst. pose proof eval_addxl as ADDXL.
    unfold binary_constructor_sound in ADDXL.
    rewrite Val.addl_commut.
    apply ADDXL; assumption.
    (* Oaddxl *)
  - subst. pose proof eval_addxl as ADDXL.
    unfold binary_constructor_sound in ADDXL.
    apply ADDXL; assumption.
  - TrivialExists.
Qed.

Theorem eval_subl: binary_constructor_sound subl Val.subl.
Proof.
  unfold subl. destruct Archi.splitlong eqn:SL.
  apply SplitLongproof.eval_subl. apply Archi.splitlong_ptr32; auto.
  red; intros; destruct (subl_match a b); InvEval.
- rewrite Val.subl_addl_opp. apply eval_addlimm; auto.
- subst. rewrite Val.subl_addl_l. rewrite Val.subl_addl_r.
  rewrite Val.addl_assoc. simpl. rewrite Int64.add_commut. rewrite <- Int64.sub_add_opp.
  apply eval_addlimm; EvalOp.
- subst. rewrite Val.subl_addl_l. apply eval_addlimm; EvalOp.
- subst. rewrite Val.subl_addl_r.
  apply eval_addlimm; EvalOp.
- TrivialExists. simpl. subst. reflexivity.
- TrivialExists. simpl. subst.
  destruct v1; destruct x; simpl; trivial.
  + f_equal. f_equal.
    rewrite <- Int64.neg_mul_distr_r.
    rewrite Int64.sub_add_opp.
    reflexivity.
  + destruct (Archi.ptr64) eqn:ARCHI64; simpl; trivial.
    f_equal. f_equal.
    rewrite <- Int64.neg_mul_distr_r.
    rewrite Ptrofs.sub_add_opp.
    unfold Ptrofs.add.
    f_equal. f_equal.
    rewrite (Ptrofs.agree64_neg ARCHI64 (Ptrofs.of_int64 (Int64.mul i n)) (Int64.mul i n)).
    rewrite (Ptrofs.agree64_of_int ARCHI64 (Int64.neg (Int64.mul i n))).
    reflexivity.
    apply (Ptrofs.agree64_of_int ARCHI64).
- TrivialExists.
Qed.

Theorem eval_shllimm: forall n, unary_constructor_sound (fun e => shllimm e n) (fun v => Val.shll v (Vint n)).
Proof.
  intros; unfold shllimm. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shllimm; auto.
  red; intros.
  predSpec Int.eq Int.eq_spec n Int.zero.
  exists x; split; auto. subst n; destruct x; simpl; auto.
  destruct (Int.ltu Int.zero Int64.iwordsize'); auto.
  change (Int64.shl' i Int.zero) with (Int64.shl i Int64.zero). rewrite Int64.shl_zero; auto.
  destruct (Int.ltu n Int64.iwordsize') eqn:LT; simpl.
  assert (DEFAULT: exists v, eval_expr ge sp e m le (Eop (Oshllimm n) (a:::Enil)) v
                         /\ Val.lessdef (Val.shll x (Vint n)) v) by TrivialExists.
  destruct (shllimm_match a); InvEval.
- econstructor; split. apply eval_longconst. simpl; rewrite LT; auto.
- destruct (Int.ltu (Int.add n n1) Int64.iwordsize') eqn:LT'; auto.
  subst. econstructor; split. EvalOp. simpl; eauto.
  destruct v1; simpl; auto. rewrite LT'.
  destruct (Int.ltu n1 Int64.iwordsize') eqn:LT1; auto.
  simpl; rewrite LT. rewrite Int.add_commut, Int64.shl'_shl'; auto. rewrite Int.add_commut; auto.
- apply DEFAULT.
- TrivialExists. constructor; eauto. constructor. EvalOp. simpl; eauto. constructor. auto.
Qed.

Theorem eval_shrluimm: forall n, unary_constructor_sound (fun e => shrluimm e n) (fun v => Val.shrlu v (Vint n)).
Proof.
  intros; unfold shrluimm. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrluimm; auto.
  red; intros.
  predSpec Int.eq Int.eq_spec n Int.zero.
  exists x; split; auto. subst n; destruct x; simpl; auto.
  destruct (Int.ltu Int.zero Int64.iwordsize'); auto.
  change (Int64.shru' i Int.zero) with (Int64.shru i Int64.zero). rewrite Int64.shru_zero; auto.
  destruct (Int.ltu n Int64.iwordsize') eqn:LT.
  assert (DEFAULT: exists v, eval_expr ge sp e m le (Eop (Oshrluimm n) (a:::Enil)) v
                         /\ Val.lessdef (Val.shrlu x (Vint n)) v) by TrivialExists.
  destruct (shrluimm_match a); InvEval.
- econstructor; split. apply eval_longconst. simpl; rewrite LT; auto.
- destruct (Int.ltu (Int.add n n1) Int64.iwordsize') eqn:LT'; auto.
  subst. econstructor; split. EvalOp. simpl; eauto.
  destruct v1; simpl; auto. rewrite LT'.
  destruct (Int.ltu n1 Int64.iwordsize') eqn:LT1; auto.
  simpl; rewrite LT. rewrite Int.add_commut, Int64.shru'_shru'; auto. rewrite Int.add_commut; auto.
- subst x.
    simpl negb.
    cbn iota.
    destruct (is_bitfieldl _ _) eqn:BOUNDS.
    + exists (extfzl (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one))
            (Z.sub
               (Z.add
                  (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)))
                  Z.one) Int64.zwordsize) v1).
      split.
      ++ EvalOp.
      ++ unfold extfzl.
         rewrite BOUNDS.
         destruct v1; try (simpl; apply Val.lessdef_undef).
        replace (Z.sub Int64.zwordsize
                         (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one)) with (Int.unsigned n1) by lia.
        replace (Z.sub Int64.zwordsize
             (Z.sub
                (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one)
                (Z.sub
                   (Z.add
                      (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)))
                      Z.one) Int64.zwordsize))) with (Int.unsigned n) by lia.
        simpl.
        destruct (Int.ltu n1 Int64.iwordsize') eqn:Hltu_n1; simpl; trivial.
        destruct (Int.ltu n Int64.iwordsize') eqn:Hltu_n; simpl; trivial.
        rewrite Int.repr_unsigned.
        rewrite Int.repr_unsigned.
        constructor.
    + TrivialExists. constructor. econstructor. constructor. eassumption. constructor. simpl. reflexivity. constructor. simpl. reflexivity.
- apply DEFAULT.
- TrivialExists. constructor; eauto. constructor. EvalOp. simpl; eauto. constructor. auto.
Qed.

Theorem eval_shrlimm: forall n, unary_constructor_sound (fun e => shrlimm e n) (fun v => Val.shrl v (Vint n)).
Proof.
  intros; unfold shrlimm. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrlimm; auto.
  red; intros.
  predSpec Int.eq Int.eq_spec n Int.zero.
  exists x; split; auto. subst n; destruct x; simpl; auto.
  destruct (Int.ltu Int.zero Int64.iwordsize'); auto.
  change (Int64.shr' i Int.zero) with (Int64.shr i Int64.zero). rewrite Int64.shr_zero; auto.
  destruct (Int.ltu n Int64.iwordsize') eqn:LT.
  assert (DEFAULT: exists v, eval_expr ge sp e m le (Eop (Oshrlimm n) (a:::Enil)) v
                         /\ Val.lessdef (Val.shrl x (Vint n)) v) by TrivialExists.
  destruct (shrlimm_match a); InvEval.
- econstructor; split. apply eval_longconst. simpl; rewrite LT; auto.
- destruct (Int.ltu (Int.add n n1) Int64.iwordsize') eqn:LT'; auto.
  subst. econstructor; split. EvalOp. simpl; eauto.
  destruct v1; simpl; auto. rewrite LT'.
  destruct (Int.ltu n1 Int64.iwordsize') eqn:LT1; auto.
  simpl; rewrite LT. rewrite Int.add_commut, Int64.shr'_shr'; auto. rewrite Int.add_commut; auto.
- subst x.
    simpl negb.
    cbn iota.
    destruct (is_bitfieldl _ _) eqn:BOUNDS.
    + exists (extfsl (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one))
            (Z.sub
               (Z.add
                  (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)))
                  Z.one) Int64.zwordsize) v1).
      split.
      ++ EvalOp.
      ++ unfold extfsl.
         rewrite BOUNDS.
         destruct v1; try (simpl; apply Val.lessdef_undef).
        replace (Z.sub Int64.zwordsize
                         (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one)) with (Int.unsigned n1) by lia.
        replace (Z.sub Int64.zwordsize
             (Z.sub
                (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one)
                (Z.sub
                   (Z.add
                      (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)))
                      Z.one) Int64.zwordsize))) with (Int.unsigned n) by lia.
        simpl.
        destruct (Int.ltu n1 Int64.iwordsize') eqn:Hltu_n1; simpl; trivial.
        destruct (Int.ltu n Int64.iwordsize') eqn:Hltu_n; simpl; trivial.
        rewrite Int.repr_unsigned.
        rewrite Int.repr_unsigned.
        constructor.
    + TrivialExists. constructor. econstructor. constructor. eassumption. constructor. simpl. reflexivity. constructor. simpl. reflexivity.
- apply DEFAULT.
- TrivialExists. constructor; eauto. constructor. EvalOp. simpl; eauto. constructor. auto.
Qed.

Theorem eval_shll: binary_constructor_sound shll Val.shll.
Proof.
  unfold shll. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shll; auto.
  red; intros. destruct (is_intconst b) as [n2|] eqn:C.
- exploit is_intconst_sound; eauto. intros EQ; subst y. apply eval_shllimm; auto.
- TrivialExists.
Qed.

Theorem eval_shrlu: binary_constructor_sound shrlu Val.shrlu.
Proof.
  unfold shrlu. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrlu; auto.
  red; intros. destruct (is_intconst b) as [n2|] eqn:C.
- exploit is_intconst_sound; eauto. intros EQ; subst y. apply eval_shrluimm; auto.
- TrivialExists.
Qed.

Theorem eval_shrl: binary_constructor_sound shrl Val.shrl.
Proof.
  unfold shrl. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrl; auto.
  red; intros. destruct (is_intconst b) as [n2|] eqn:C.
- exploit is_intconst_sound; eauto. intros EQ; subst y. apply eval_shrlimm; auto.
- TrivialExists.
Qed.

Theorem eval_mullimm_base: forall n, unary_constructor_sound (mullimm_base n) (fun v => Val.mull v (Vlong n)).
Proof.
  intros; unfold mullimm_base. red; intros.
  assert (DEFAULT: exists v,
                eval_expr ge sp e m le (Eop Omull (a ::: longconst n ::: Enil)) v
             /\ Val.lessdef (Val.mull x (Vlong n)) v).
  { econstructor; split. EvalOp. constructor. eauto. constructor. apply eval_longconst. constructor. simpl; eauto.
    auto. }
  generalize (Int64.one_bits'_decomp n); intros D.
  destruct (Int64.one_bits' n) as [ | i [ | j [ | ? ? ]]] eqn:B.
- TrivialExists.
- replace (Val.mull x (Vlong n)) with (Val.shll x (Vint i)).
  apply eval_shllimm; auto.
  simpl in D. rewrite D, Int64.add_zero. destruct x; simpl; auto.
  rewrite (Int64.one_bits'_range n) by (rewrite B; auto with coqlib).
  rewrite Int64.shl'_mul; auto.
- set (le' := x :: le).
  assert (A0: eval_expr ge sp e m le' (Eletvar O) x) by (constructor; reflexivity).
  exploit (eval_shllimm i). eexact A0. intros (v1 & A1 & B1).
  exploit (eval_shllimm j). eexact A0. intros (v2 & A2 & B2).
  exploit (eval_addl). eexact A1. eexact A2. intros (v3 & A3 & B3).
  exists v3; split. econstructor; eauto.
  rewrite D. simpl. rewrite Int64.add_zero. destruct x; auto.
  simpl in *.
  rewrite (Int64.one_bits'_range n) in B1 by (rewrite B; auto with coqlib).
  rewrite (Int64.one_bits'_range n) in B2 by (rewrite B; auto with coqlib).
  inv B1; inv B2. simpl in B3; inv B3.
  rewrite Int64.mul_add_distr_r. rewrite <- ! Int64.shl'_mul. auto.
- TrivialExists.
Qed.

Theorem eval_mullimm: forall n, unary_constructor_sound (mullimm n) (fun v => Val.mull v (Vlong n)).
Proof.
  unfold mullimm. intros; red; intros.
  destruct Archi.splitlong eqn:SL.
  eapply SplitLongproof.eval_mullimm; eauto.
  predSpec Int64.eq Int64.eq_spec n Int64.zero.
  exists (Vlong Int64.zero); split. apply eval_longconst.
  destruct x; simpl; auto. subst n; rewrite Int64.mul_zero; auto.
  predSpec Int64.eq Int64.eq_spec n Int64.one.
  exists x; split; auto.
  destruct x; simpl; auto. subst n; rewrite Int64.mul_one; auto.
  destruct (mullimm_match a); InvEval.
- econstructor; split. apply eval_longconst. rewrite Int64.mul_commut; auto.
- exploit (eval_mullimm_base n); eauto. intros (v2 & A2 & B2).
  exploit (eval_addlimm (Int64.mul n n2)). eexact A2. intros (v3 & A3 & B3).
  exists v3; split; auto.
  subst x. destruct v1; simpl; auto.
  simpl in B2; inv B2. simpl in B3; inv B3. rewrite Int64.mul_add_distr_l.
  rewrite (Int64.mul_commut n). auto.
- apply eval_mullimm_base; auto.
Qed.

Theorem eval_mull: binary_constructor_sound mull Val.mull.
Proof.
  unfold mull. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_mull; auto.
  red; intros; destruct (mull_match a b); InvEval.
- rewrite Val.mull_commut. apply eval_mullimm; auto.
- apply eval_mullimm; auto.
- TrivialExists.
Qed.

Theorem eval_mullhu:
  forall n, unary_constructor_sound (fun a => mullhu a n) (fun v => Val.mullhu v (Vlong n)).
Proof.
  unfold mullhu; intros. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_mullhu; auto.
  red; intros. TrivialExists. constructor. eauto. constructor. apply eval_longconst. constructor. auto.
Qed.

Theorem eval_mullhs:
  forall n, unary_constructor_sound (fun a => mullhs a n) (fun v => Val.mullhs v (Vlong n)).
Proof.
  unfold mullhs; intros. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_mullhs; auto.
  red; intros. TrivialExists. constructor. eauto. constructor. apply eval_longconst. constructor. auto.
Qed.

Theorem eval_andlimm: forall n, unary_constructor_sound (andlimm n) (fun v => Val.andl v (Vlong n)).
Proof.
  unfold andlimm; intros; red; intros.
  predSpec Int64.eq Int64.eq_spec n Int64.zero.
  exists (Vlong Int64.zero); split. apply eval_longconst.
  subst. destruct x; simpl; auto. rewrite Int64.and_zero; auto.
  predSpec Int64.eq Int64.eq_spec n Int64.mone.
  exists x; split. assumption.
  subst. destruct x; simpl; auto. rewrite Int64.and_mone; auto.
  destruct (andlimm_match a); InvEval; subst.
- econstructor; split. apply eval_longconst. simpl. rewrite Int64.and_commut; auto.
- TrivialExists. simpl. rewrite Val.andl_assoc. rewrite Int64.and_commut; auto.
- TrivialExists.
- TrivialExists.
Qed.

Lemma int64_eq_commut: forall x y : int64,
    (Int64.eq x y) = (Int64.eq y x).
Proof.
  intros.
  predSpec Int64.eq Int64.eq_spec x y;
    predSpec Int64.eq Int64.eq_spec y x;
    congruence.
Qed.

Theorem eval_andl: binary_constructor_sound andl Val.andl.
Proof.
  unfold andl; destruct Archi.splitlong. apply SplitLongproof.eval_andl.
  red; intros. destruct (andl_match a b).
- InvEval. rewrite Val.andl_commut. apply eval_andlimm; auto.
- InvEval. apply eval_andlimm; auto.
- (*andn*) InvEval. TrivialExists. simpl. congruence.
- (*andn reverse*) InvEval. rewrite Val.andl_commut. TrivialExists; simpl. congruence.
  (*
(* selectl *)
  InvEval.
  predSpec Int64.eq Int64.eq_spec zero1 Int64.zero; simpl; TrivialExists.
  + constructor. econstructor; constructor.
  constructor; try constructor; try constructor; try eassumption.
  + simpl in *. f_equal. inv H6.
    unfold selectl.
    simpl.
    destruct v3; simpl; trivial.
    rewrite int64_eq_commut.
    destruct (Int64.eq i Int64.zero); simpl.
    * replace (Int64.repr (Int.signed (Int.neg Int.zero))) with Int64.zero by Int64.bit_solve.
      destruct y; simpl; trivial.
    * replace (Int64.repr (Int.signed (Int.neg Int.one))) with Int64.mone by Int64.bit_solve.
      destruct y; simpl; trivial.
      rewrite Int64.and_commut. rewrite Int64.and_mone. reflexivity.
  + constructor. econstructor. constructor. econstructor. constructor. econstructor. constructor. eassumption. constructor. simpl. f_equal. constructor. simpl. f_equal. constructor. simpl. f_equal. constructor. eassumption. constructor.
  + simpl in *. congruence. *)

- TrivialExists.
Qed.

Theorem eval_orlimm: forall n, unary_constructor_sound (orlimm n) (fun v => Val.orl v (Vlong n)).
Proof.
  unfold orlimm; intros; red; intros.
  predSpec Int64.eq Int64.eq_spec n Int64.zero.
  exists x; split; auto. subst. destruct x; simpl; auto. rewrite Int64.or_zero; auto.
  predSpec Int64.eq Int64.eq_spec n Int64.mone.
  econstructor; split. apply eval_longconst. subst. destruct x; simpl; auto. rewrite Int64.or_mone; auto.
  destruct (orlimm_match a); InvEval; subst.
- econstructor; split. apply eval_longconst. simpl. rewrite Int64.or_commut; auto.
- TrivialExists. simpl. rewrite Val.orl_assoc. rewrite Int64.or_commut; auto.
- InvEval. TrivialExists.
- TrivialExists.
Qed.


Theorem eval_orl: binary_constructor_sound orl Val.orl.
Proof.
  unfold orl; destruct Archi.splitlong. apply SplitLongproof.eval_orl.
  red; intros.
  destruct (orl_match a b).
- InvEval. rewrite Val.orl_commut. apply eval_orlimm; auto.
- InvEval. apply eval_orlimm; auto.
- (*orn*) InvEval. TrivialExists; simpl; congruence.
- (*orn reversed*) InvEval. rewrite Val.orl_commut. TrivialExists; simpl; congruence.

  - (*insfl first case*)
    destruct (is_bitfieldl _ _) eqn:Risbitfield.
    + destruct (and_dec _ _) as [[Rmask Rnmask] | ].
      * rewrite Rnmask in *.
        inv H. inv H0. inv H4. inv H3. inv H9. inv H8.
        simpl in H6, H7.
        inv H6. inv H7.
        inv H4. inv H3. inv H7.
        simpl in H6.
        inv H6.
        set (zstop := (int64_highest_bit mask)) in *.
        set (zstart := (Int.unsigned start)) in *.
        
        TrivialExists.
        simpl. f_equal.
        
        unfold insfl.
        rewrite Risbitfield.
        rewrite Rmask.
        simpl.
        unfold bitfield_maskl.
        subst zstart.
        rewrite Int.repr_unsigned.
        reflexivity.
      * TrivialExists.
    + TrivialExists.
  - destruct (is_bitfieldl _ _) eqn:Risbitfield.
    + destruct (and_dec _ _) as [[Rmask Rnmask] | ].
      * rewrite Rnmask in *.
        inv H. inv H0. inv H4. inv H6. inv H8. inv H3. inv H8.
        inv H0. simpl in H7. inv H7.
        set (zstop := (int64_highest_bit mask)) in *.
        set (zstart := 0) in *.
    
        TrivialExists. simpl. f_equal.
        unfold insfl.
        rewrite Risbitfield.
        rewrite Rmask.
        simpl.
        subst zstart.
        f_equal.
        destruct v0; simpl; trivial.
        unfold Int.ltu, Int64.iwordsize', Int64.zwordsize, Int64.wordsize.
        rewrite Int.unsigned_repr.
        ** rewrite Int.unsigned_repr.
           *** simpl.
               rewrite Int64.shl'_zero.
               reflexivity.
           *** simpl. unfold Int.max_unsigned. unfold Int.modulus.
               simpl. lia.
        ** unfold Int.max_unsigned. unfold Int.modulus.
               simpl. lia.
      * TrivialExists.
    + TrivialExists.
- TrivialExists.
Qed.

Theorem eval_xorlimm: forall n, unary_constructor_sound (xorlimm n) (fun v => Val.xorl v (Vlong n)).
Proof.
  unfold xorlimm; intros; red; intros.
  predSpec Int64.eq Int64.eq_spec n Int64.zero.
  - exists x; split; auto. subst. destruct x; simpl; auto. rewrite Int64.xor_zero; auto.
  - predSpec Int64.eq Int64.eq_spec n Int64.mone.
    -- subst n. intros. rewrite <- Val.notl_xorl. TrivialExists.
    -- destruct (xorlimm_match a); InvEval; subst.
    + econstructor; split. apply eval_longconst. simpl. rewrite Int64.xor_commut; auto.
    + rewrite Val.xorl_assoc. simpl. rewrite (Int64.xor_commut n2).
      predSpec Int64.eq Int64.eq_spec (Int64.xor n n2) Int64.zero.
      * rewrite H. exists v1; split; auto. destruct v1; simpl; auto. rewrite Int64.xor_zero; auto.
      * TrivialExists.
    + TrivialExists.
Qed.

Theorem eval_xorl: binary_constructor_sound xorl Val.xorl.
Proof.
  unfold xorl; destruct Archi.splitlong. apply SplitLongproof.eval_xorl.
  red; intros. destruct (xorl_match a b).
- InvEval. rewrite Val.xorl_commut. apply eval_xorlimm; auto.
- InvEval. apply eval_xorlimm; auto.
- TrivialExists.
Qed.

Theorem eval_notl: unary_constructor_sound notl Val.notl.
Proof.
  assert (forall v, Val.lessdef (Val.notl (Val.notl v)) v).
    destruct v; simpl; auto. rewrite Int64.not_involutive; auto.
  unfold notl; red; intros until x; case (notl_match a); intros; InvEval.
  - TrivialExists; simpl; congruence.
  - TrivialExists; simpl; congruence.
  - TrivialExists; simpl; congruence.
  - TrivialExists; simpl; congruence.
  - TrivialExists; simpl; congruence.
  - TrivialExists; simpl; congruence.
    - subst x. exists (Val.andl v1 v0); split; trivial.
      econstructor. constructor. eassumption. constructor.
      eassumption. constructor. simpl. reflexivity.
    - subst x. exists (Val.andl v1 (Vlong n)); split; trivial.
      econstructor. constructor. eassumption. constructor.
      simpl. reflexivity.
    - subst x. exists (Val.orl v1 v0); split; trivial.
      econstructor. constructor. eassumption. constructor.
      eassumption. constructor. simpl. reflexivity.
    - subst x. exists (Val.orl v1 (Vlong n)); split; trivial.
      econstructor. constructor. eassumption. constructor.
      simpl. reflexivity.
    - subst x. exists (Val.xorl v1 v0); split; trivial.
      econstructor. constructor. eassumption. constructor.
      eassumption. constructor. simpl. reflexivity.
    - subst x. exists (Val.xorl v1 (Vlong n)); split; trivial.
      econstructor. constructor. eassumption. constructor.
      simpl. reflexivity.
    (* andn *)
    - subst x. TrivialExists. simpl.
      destruct v0; destruct v1; simpl; trivial.
      f_equal. f_equal.
      rewrite Int64.not_and_or_not.
      rewrite Int64.not_involutive.
      apply Int64.or_commut.
    - subst x. TrivialExists. simpl.
      destruct v1; simpl; trivial.
      f_equal. f_equal.
      rewrite Int64.not_and_or_not.
      rewrite Int64.not_involutive.
      reflexivity.
    (* orn *)
    - subst x. TrivialExists. simpl.
      destruct v0; destruct v1; simpl; trivial.
      f_equal. f_equal.
      rewrite Int64.not_or_and_not.
      rewrite Int64.not_involutive.
      apply Int64.and_commut.
    - subst x. TrivialExists. simpl.
      destruct v1; simpl; trivial.
      f_equal. f_equal.
      rewrite Int64.not_or_and_not.
      rewrite Int64.not_involutive.
      reflexivity.
    - subst x. exists v1; split; trivial.
    - TrivialExists.
  - TrivialExists.
Qed.

Theorem eval_divls_base:
  forall le a b x y z,
    eval_expr ge sp e m le a x ->
    eval_expr ge sp e m le b y ->
    Val.divls x y = Some z ->
    exists v, eval_expr ge sp e m le (divls_base a b) v /\ Val.lessdef z v.
Proof.
  intros until z. intros EVAL_a EVAL_b EQ. unfold divls_base.
  destruct (Compopts.inline_fp_div64 tt).
  { destruct x; try discriminate.
    destruct y; try discriminate.
    unfold Val.divls, Int64.eq in EQ.
    pose proof (Int64.unsigned_range i0).
    change (Int64.unsigned Int64.zero) with 0 in EQ.
    destruct (zeq (Int64.unsigned i0) 0). discriminate.
    cbn in EQ.
    destruct (_ && _) eqn:AND in EQ. discriminate.
    econstructor; split.
    {
      apply FPDivision64.fp_divs64_correct.
      exact EVAL_a. exact EVAL_b.
      lia.
    }
    inv EQ.
    constructor.
  }
  eapply SplitLongproof.eval_divls_base; eauto.
Qed.

Theorem eval_modls_base:
  forall le a b x y z,
    eval_expr ge sp e m le a x ->
    eval_expr ge sp e m le b y ->
    Val.modls x y = Some z ->
    exists v, eval_expr ge sp e m le (modls_base a b) v /\ Val.lessdef z v.
Proof.
  intros until z. intros EVAL_a EVAL_b EQ. unfold modls_base.
  destruct (Compopts.inline_fp_div64 tt).
  { destruct x; try discriminate.
    destruct y; try discriminate.
    unfold Val.modls, Int64.eq in EQ.
    pose proof (Int64.unsigned_range i0).
    change (Int64.unsigned Int64.zero) with 0 in EQ.
    destruct (zeq (Int64.unsigned i0) 0). discriminate.
    cbn in EQ.
    destruct (_ && _) eqn:AND in EQ. discriminate.
    econstructor; split.
    {
      apply FPDivision64.fp_mods64_correct.
      exact EVAL_a. exact EVAL_b.
      lia.
    }
    inv EQ.
    constructor.
  }
  eapply SplitLongproof.eval_modls_base; eauto.
Qed.

Theorem eval_divlu_base:
  forall le a b x y z,
    eval_expr ge sp e m le a x ->
    eval_expr ge sp e m le b y ->
    Val.divlu x y = Some z ->
    exists v, eval_expr ge sp e m le (divlu_base a b) v /\ Val.lessdef z v.
Proof.
  intros until z. intros EVAL_a EVAL_b EQ. unfold divlu_base.
  destruct (Compopts.inline_fp_div64 tt).
  { destruct x; try discriminate.
    destruct y; try discriminate.
    unfold Val.divlu, Int64.eq in EQ.
    pose proof (Int64.unsigned_range i0).
    change (Int64.unsigned Int64.zero) with 0 in EQ.
    destruct zeq. discriminate.
    inv EQ.
    econstructor; split.
    {
      apply FPDivision64.fp_divu64_correct.
      exact EVAL_a. exact EVAL_b.
      lia.
    }
    constructor.
  }
  eapply SplitLongproof.eval_divlu_base; eauto.
Qed.
  
Theorem eval_modlu_base:
  forall le a b x y z,
    eval_expr ge sp e m le a x ->
    eval_expr ge sp e m le b y ->
    Val.modlu x y = Some z ->
    exists v, eval_expr ge sp e m le (modlu_base a b) v /\ Val.lessdef z v.
Proof.
  intros until z. intros EVAL_a EVAL_b EQ. unfold modlu_base.
  destruct (Compopts.inline_fp_div64 tt).
  { destruct x; try discriminate.
    destruct y; try discriminate.
    unfold Val.modlu, Int64.eq in EQ.
    pose proof (Int64.unsigned_range i0).
    change (Int64.unsigned Int64.zero) with 0 in EQ.
    destruct zeq. discriminate.
    inv EQ.
    econstructor; split.
    {
      apply FPDivision64.fp_modu64_correct.
      exact EVAL_a. exact EVAL_b.
      lia.
    }
    constructor.
  }
  eapply SplitLongproof.eval_modlu_base; eauto.
Qed.

Theorem eval_shrxlimm:
  forall le a n x z,
  eval_expr ge sp e m le a x ->
  Val.shrxl x (Vint n) = Some z ->
  exists v, eval_expr ge sp e m le (shrxlimm a n) v /\ Val.lessdef z v.
Proof.
  unfold shrxlimm; intros. destruct Archi.splitlong eqn:SL.
+ eapply SplitLongproof.eval_shrxlimm; eauto using Archi.splitlong_ptr32.
+ predSpec Int.eq Int.eq_spec n Int.zero.
- subst n. destruct x; simpl in H0; inv H0. econstructor; split; eauto.
  change (Int.ltu Int.zero (Int.repr 63)) with true. simpl. rewrite Int64.shrx'_zero; auto.
- TrivialExists. simpl. rewrite H0. reflexivity.
Qed.

Theorem eval_cmplu:
  forall c le a x b y v,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.cmplu (Mem.valid_pointer m) c x y = Some v ->
  eval_expr ge sp e m le (cmplu c a b) v.
Proof.
  unfold cmplu; intros. destruct Archi.splitlong eqn:SL.
  eapply SplitLongproof.eval_cmplu; eauto using Archi.splitlong_ptr32.
  unfold Val.cmplu in H1.
  destruct (Val.cmplu_bool (Mem.valid_pointer m) c x y) as [vb|] eqn:C; simpl in H1; inv H1.
  destruct (is_longconst a) as [n1|] eqn:LC1; destruct (is_longconst b) as [n2|] eqn:LC2;
  try (assert (x = Vlong n1) by (eapply is_longconst_sound; eauto));
  try (assert (y = Vlong n2) by (eapply is_longconst_sound; eauto));
  subst.
- simpl in C; inv C. EvalOp. destruct (Int64.cmpu c n1 n2); reflexivity.
- EvalOp. simpl. rewrite Val.swap_cmplu_bool. rewrite C; auto.
- EvalOp. simpl; rewrite C; auto.
- EvalOp. simpl; rewrite C; auto.
Qed.

Theorem eval_cmpl:
  forall c le a x b y v,
  eval_expr ge sp e m le a x ->
  eval_expr ge sp e m le b y ->
  Val.cmpl c x y = Some v ->
  eval_expr ge sp e m le (cmpl c a b) v.
Proof.
  unfold cmpl; intros. destruct Archi.splitlong eqn:SL.
  eapply SplitLongproof.eval_cmpl; eauto.
  unfold Val.cmpl in H1.
  destruct (Val.cmpl_bool c x y) as [vb|] eqn:C; simpl in H1; inv H1.
  destruct (is_longconst a) as [n1|] eqn:LC1; destruct (is_longconst b) as [n2|] eqn:LC2;
  try (assert (x = Vlong n1) by (eapply is_longconst_sound; eauto));
  try (assert (y = Vlong n2) by (eapply is_longconst_sound; eauto));
  subst.
- simpl in C; inv C. EvalOp. destruct (Int64.cmp c n1 n2); reflexivity.
- EvalOp. simpl. rewrite Val.swap_cmpl_bool. rewrite C; auto.
- EvalOp. simpl; rewrite C; auto.
- EvalOp. simpl; rewrite C; auto.
Qed.

Theorem eval_longoffloat: partial_unary_constructor_sound longoffloat Val.longoffloat.
Proof.
  unfold longoffloat; red; intros.
  TrivialExists.
  simpl. rewrite H0. reflexivity.
Qed.

Theorem eval_longuoffloat: partial_unary_constructor_sound longuoffloat Val.longuoffloat.
Proof.
  unfold longuoffloat; red; intros.
  TrivialExists.
  simpl. rewrite H0. reflexivity.
Qed.

Theorem eval_floatoflong: partial_unary_constructor_sound floatoflong Val.floatoflong.
Proof.
  unfold floatoflong; red; intros.
  TrivialExists.
  simpl. rewrite H0. reflexivity.
Qed.

Theorem eval_floatoflongu: partial_unary_constructor_sound floatoflongu Val.floatoflongu.
Proof.
  unfold floatoflongu; red; intros.
  TrivialExists.
  simpl. rewrite H0. reflexivity.
Qed.

Theorem eval_longofsingle: partial_unary_constructor_sound longofsingle Val.longofsingle.
Proof.
  unfold longofsingle; red; intros.
  destruct x; simpl in H0; inv H0. destruct (Float32.to_long f) as [n|] eqn:EQ; simpl in H2; inv H2.
  exploit eval_floatofsingle; eauto. intros (v & A & B). simpl in B. inv B.
  apply Float32.to_long_double in EQ.
  eapply eval_longoffloat; eauto. simpl.
  change (Float.of_single f) with (Float32.to_double f); rewrite EQ; auto.
Qed.

Theorem eval_longuofsingle: partial_unary_constructor_sound longuofsingle Val.longuofsingle.
Proof.
  unfold longuofsingle; red; intros. (* destruct Archi.splitlong eqn:SL. *)
  destruct x; simpl in H0; inv H0. destruct (Float32.to_longu f) as [n|] eqn:EQ; simpl in H2; inv H2.
  exploit eval_floatofsingle; eauto. intros (v & A & B). simpl in B. inv B.
  apply Float32.to_longu_double in EQ.
  eapply eval_longuoffloat; eauto. simpl.
  change (Float.of_single f) with (Float32.to_double f); rewrite EQ; auto.
Qed.

Theorem eval_singleoflong: partial_unary_constructor_sound singleoflong Val.singleoflong.
Proof.
  unfold singleoflong; red; intros.
  destruct use_inlined_fp_conversions.
  - econstructor. split. apply FPExtra.e_single_of_long_correct.
    eassumption. rewrite H0. cbn. constructor.
  - eapply SplitLongproof.eval_singleoflong; eauto.
Qed.

Theorem eval_singleoflongu: partial_unary_constructor_sound singleoflongu Val.singleoflongu.
Proof.
  unfold singleoflongu; red; intros.
  destruct use_inlined_fp_conversions.
  - econstructor. split. apply FPExtra.e_single_of_longu_correct.
    eassumption. rewrite H0. cbn. constructor.
  - eapply SplitLongproof.eval_singleoflongu; eauto.
Qed.

End CMCONSTR.