Module CSEdomain


The abstract domain for value numbering, used in common subexpression elimination.

Require Import Coqlib Maps ValueDomain.
Require Import AST Integers Values Memory.
Require Import Op Registers RTL.

Value numbers are represented by positive integers. Equations are of the form valnum = rhs or valnum >= rhs, where the right-hand sides rhs are either arithmetic operations or memory loads, = is strict equality of values, and >= is the "more defined than" relation over values.

Definition valnum := positive.

Inductive rhs : Type :=
  | Op: operation -> list valnum -> rhs
  | Load: memory_chunk -> addressing -> list valnum -> aval -> rhs.

Inductive equation : Type :=
  | Eq (v: valnum) (strict: bool) (r: rhs).

Definition eq_valnum: forall (x y: valnum), {x=y}+{x<>y} := peq.

Definition eq_list_valnum: forall (x y: list valnum), {x=y}+{x<>y} := list_eq_dec peq.

Definition eq_rhs_orig (x y: rhs) : {x=y}+{x<>y}.
Proof.
  generalize trapping_mode_eq chunk_eq eq_operation eq_addressing eq_valnum eq_list_valnum eq_aval.
  decide equality.
Defined.

Definition raw_rhs (r: rhs) :=
  match r with
  | Load chunk addr rl _ => Load chunk addr rl Vtop
  | _ => r
  end.

Definition eq_rhs (x y: rhs) := eq_rhs_orig (raw_rhs x) (raw_rhs y).


A value numbering is a collection of equations between value numbers plus a partial map from registers to value numbers. Additionally, we maintain the next unused value number, so as to easily generate fresh value numbers. We also maintain a reverse mapping from value numbers to registers, redundant with the mapping from registers to value numbers, in order to speed up some operations.

Record numbering : Type := mknumbering {
  num_next: valnum; (* first unused value number *)
  num_eqs: list equation; (* valid equations *)
  num_reg: PTree.t valnum; (* mapping register to valnum *)
  num_val: PMap.t (list reg) (* reverse mapping valnum to regs containing it *)
}.

Definition empty_numbering :=
  {| num_next := 1%positive;
     num_eqs := nil;
     num_reg := PTree.empty _;
     num_val := PMap.init nil |}.

A numbering is well formed if all value numbers mentioned are below num_next. Moreover, the num_val reverse mapping must be consistent with the num_reg direct mapping.

Definition valnums_rhs (r: rhs): list valnum :=
  match r with
  | Op op vl => vl
  | Load chunk addr vl _ => vl
  end.

Definition wf_rhs (next: valnum) (r: rhs) : Prop :=
forall v, In v (valnums_rhs r) -> Plt v next.

Definition wf_equation (next: valnum) (e: equation) : Prop :=
  match e with Eq l str r => Plt l next /\ wf_rhs next r end.

Record wf_numbering (n: numbering) : Prop := {
  wf_num_eqs: forall e,
      In e n.(num_eqs) -> wf_equation n.(num_next) e;
  wf_num_reg: forall r v,
      PTree.get r n.(num_reg) = Some v -> Plt v n.(num_next);
  wf_num_val: forall r v,
      In r (PMap.get v n.(num_val)) -> PTree.get r n.(num_reg) = Some v
}.

Global Hint Resolve wf_num_eqs wf_num_reg wf_num_val: cse.

Section SEMANTICS.

Variable bc: block_classification.

Satisfiability of numberings. A numbering holds in a concrete execution state if there exists a valuation assigning values to value numbers that satisfies the equations and register mapping of the numbering.

Definition valuation := valnum -> val.

Inductive rhs_eval_to (valu: valuation) (ge: genv) (sp: val) (m: mem):
                                                     rhs -> val -> Prop :=
  | op_eval_to: forall op vl v,
      eval_operation ge sp op (map valu vl) m = Some v ->
      rhs_eval_to valu ge sp m (Op op vl) v
  | load_eval_to: forall chunk addr vl a v aa,
      eval_addressing ge sp addr (map valu vl) = Some a ->
      (v=match Mem.loadv chunk m a with Some v' => v' | None => Vundef end) ->
      vmatch bc a aa ->
      rhs_eval_to valu ge sp m (Load chunk addr vl aa) v
.

Inductive equation_holds (valu: valuation) (ge: genv) (sp: val) (m: mem):
                                                      equation -> Prop :=
  | eq_holds_strict: forall l r,
      rhs_eval_to valu ge sp m r (valu l) ->
      equation_holds valu ge sp m (Eq l true r)
  | eq_holds_lessdef: forall l r v,
      rhs_eval_to valu ge sp m r v -> Val.lessdef v (valu l) ->
      equation_holds valu ge sp m (Eq l false r).

Record numbering_holds (valu: valuation) (ge: genv) (sp: val)
                       (rs: regset) (m: mem) (n: numbering) : Prop := {
  num_holds_wf:
     wf_numbering n;
  num_holds_eq: forall eq,
     In eq n.(num_eqs) -> equation_holds valu ge sp m eq;
  num_holds_reg: forall r v,
     n.(num_reg)!r = Some v -> rs#r = valu v
}.

Local Hint Resolve num_holds_wf num_holds_eq num_holds_reg: cse.

The initial value numbering, at function entry.

Lemma empty_numbering_holds:
  forall valu ge sp rs m,
  numbering_holds valu ge sp rs m empty_numbering.
Proof.
  intros; split; simpl; intros.
- split; simpl; intros.
  + contradiction.
  + rewrite PTree.gempty in H; discriminate.
  + contradiction.
- contradiction.
- rewrite PTree.gempty in H; discriminate.
Qed.

Simplification of comparisons when the two arguments have the same value number, and therefore are equal.

Definition combine_comparison (c: comparison) (x y: valnum) : option bool :=
  if eq_valnum x y then
    Some (match c with
            | Ceq | Cle | Cge => true
            | Cne | Clt | Cgt => false
          end)
  else
    None.

Lemma combine_comparison_cmp_sound:
  forall (valu: valnum -> val) c x y res res',
  combine_comparison c x y = Some res' ->
  Val.cmp_bool c (valu x) (valu y) = Some res ->
  res = res'.
Proof.
  unfold combine_comparison; intros. destruct (eq_valnum x y); inv H.
  destruct (valu y); simpl in H0; inv H0.
  destruct c; simpl; unfold Int.lt; rewrite ? Int.eq_true, ? zlt_false by lia; auto.
Qed.

Lemma combine_comparison_cmpu_sound:
  forall (valu: valnum -> val) m c x y res res',
  combine_comparison c x y = Some res' ->
  Val.cmpu_bool (Mem.valid_pointer m) c (valu x) (valu y) = Some res ->
  res = res'.
Proof.
  unfold combine_comparison, Val.cmpu_bool; intros. destruct (eq_valnum x y); inv H.
  destruct (valu y).
- discriminate.
- inv H0. destruct c; simpl; unfold Int.ltu; rewrite ? Int.eq_true, ? zlt_false by lia; auto.
- discriminate.
- discriminate.
- discriminate.
- destruct Archi.ptr64; try discriminate.
  rewrite dec_eq_true in H0. destruct andb in H0; inv H0.
  destruct c; simpl; unfold Ptrofs.ltu; rewrite ? Ptrofs.eq_true, ? zlt_false by lia; auto.
Qed.

Lemma combine_comparison_cmpl_sound:
  forall (valu: valnum -> val) c x y res res',
  combine_comparison c x y = Some res' ->
  Val.cmpl_bool c (valu x) (valu y) = Some res ->
  res = res'.
Proof.
  unfold combine_comparison; intros. destruct (eq_valnum x y); inv H.
  destruct (valu y); simpl in H0; inv H0.
  destruct c; simpl; unfold Int64.lt; rewrite ? Int64.eq_true, ? zlt_false by lia; auto.
Qed.

Lemma combine_comparison_cmplu_sound:
  forall (valu: valnum -> val) m c x y res res',
  combine_comparison c x y = Some res' ->
  Val.cmplu_bool (Mem.valid_pointer m) c (valu x) (valu y) = Some res ->
  res = res'.
Proof.
  unfold combine_comparison, Val.cmplu_bool; intros. destruct (eq_valnum x y); inv H.
  destruct (valu y).
- discriminate.
- discriminate.
- inv H0. destruct c; simpl; unfold Int64.ltu; rewrite ? Int64.eq_true, ? zlt_false by lia; auto.
- discriminate.
- discriminate.
- destruct (negb Archi.ptr64); try discriminate.
  rewrite dec_eq_true in H0. destruct andb in H0; inv H0.
  destruct c; simpl; unfold Ptrofs.ltu; rewrite ? Ptrofs.eq_true, ? zlt_false by lia; auto.
Qed.

End SEMANTICS.

Global Hint Resolve num_holds_wf num_holds_eq num_holds_reg: cse.