Correctness proof for the branch tunneling optimization for RTL.
Require Import Coqlib Maps Errors.
Require Import AST Linking.
Require Import Values Memory Registers Events Globalenvs Smallstep.
Require Import Op Locations RTL.
Require Import RTLTunneling.
Require Import Conventions1.
Local Open Scope nat.
Definition check_included_spec (
c:
code) (
td:
UF) (
ok:
option instruction) :=
ok <>
None ->
forall pc,
c!
pc =
None ->
td!
pc =
None.
Lemma check_included_correct (
td:
UF) (
c:
code):
check_included_spec c td (
check_included td c).
Proof.
Inductive target_bounds (
target:
node ->
node) (
bound:
node ->
nat) (
pc:
node) :
option instruction ->
Prop :=
|
TB_default (
TB:
target pc =
pc)
oi:
target_bounds target bound pc oi
|
TB_nop s
(
EQ:
target pc =
target s)
(
DEC:
bound s <
bound pc):
target_bounds target bound pc (
Some (
Inop s))
|
TB_cond cond args ifso ifnot info
(
EQSO:
target pc =
target ifso)
(
EQNOT:
target pc =
target ifnot)
(
DECSO:
bound ifso <
bound pc)
(
DECNOT:
bound ifnot <
bound pc):
target_bounds target bound pc (
Some (
Icond cond args ifso ifnot info))
|
TB_assert cond args ifso
(
EQSO:
target pc =
target ifso)
(
DECSO:
bound ifso <
bound pc):
target_bounds target bound pc (
Some (
Iassert cond args ifso))
.
Local Hint Resolve TB_default:
core.
Lemma target_None (
td:
UF) (
pc:
node):
td!
pc =
None ->
td pc =
pc.
Proof.
unfold target,
get.
intro EQ.
rewrite EQ.
auto.
Qed.
Local Hint Resolve target_None Z.abs_nonneg:
core.
Lemma get_nonneg td pc t d:
get td pc = (
t,
d) -> (0 <=
d)%
Z.
Proof.
unfold get.
destruct td!
pc as [(
tpc,
dpc)|];
intro H;
inv H;
lia.
Qed.
Local Hint Resolve get_nonneg:
core.
Definition bound (
td:
UF) (
pc:
node) :=
Z.to_nat (
snd (
get td pc)).
Lemma check_instr_correct (
td:
UF) (
pc:
node) (
i:
instruction):
check_instr td pc i =
OK tt ->
target_bounds (
target td) (
bound td)
pc (
Some i).
Proof.
unfold check_instr.
destruct (
td!
pc)
as [(
tpc,
dpc)|]
eqn:
EQ.
assert (
DPC:
snd (
get td pc) =
Z.abs dpc). {
unfold get.
rewrite EQ.
auto. }
-
destruct i;
try congruence.
+
destruct (
get td n)
as (
ts,
ds)
eqn:
EQs.
destruct (
peq _ _);
try congruence.
destruct (
zlt _ _);
try congruence.
intros _.
apply TB_nop.
replace (
td pc)
with tpc.
unfold target.
rewrite EQs.
auto.
unfold target.
unfold get.
rewrite EQ.
auto.
unfold bound.
rewrite DPC.
rewrite EQs;
simpl.
apply Z2Nat.inj_lt;
try lia.
apply get_nonneg with td n ts.
apply EQs.
+
destruct (
get td n)
as (
tso,
dso)
eqn:
EQSO.
destruct (
get td n0)
as (
tnot,
dnot)
eqn:
EQNOT.
intro H.
repeat ((
destruct (
peq _ _)
in H ||
destruct (
zlt _ _)
in H);
try congruence).
apply TB_cond;
subst.
*
unfold target.
replace (
fst (
get td pc))
with tnot.
rewrite EQSO.
auto.
unfold get.
rewrite EQ.
auto.
*
unfold target.
replace (
fst (
get td pc))
with tnot.
rewrite EQNOT.
auto.
unfold get.
rewrite EQ.
auto.
*
unfold bound.
rewrite DPC.
apply Z2Nat.inj_lt;
try lia.
apply get_nonneg with td n tnot.
rewrite EQSO.
auto.
rewrite EQSO.
auto.
*
unfold bound.
rewrite DPC.
apply Z2Nat.inj_lt;
try lia.
apply get_nonneg with td n0 tnot.
rewrite EQNOT;
auto.
rewrite EQNOT;
auto.
+
destruct (
get td n)
as (
tso,
dso)
eqn:
EQSO.
intro H.
repeat ((
destruct (
peq _ _)
in H ||
destruct (
zlt _ _)
in H);
try congruence).
apply TB_assert;
subst.
*
unfold target.
replace (
fst (
get td pc))
with tso.
now rewrite EQSO.
unfold get.
rewrite EQ.
auto.
*
unfold bound.
rewrite DPC.
apply Z2Nat.inj_lt;
try lia.
apply get_nonneg with td n tso.
rewrite EQSO.
auto.
rewrite EQSO.
auto.
-
intros _.
apply TB_default.
unfold target.
unfold get.
rewrite EQ.
auto.
Qed.
Definition check_code_spec (
td:
UF) (
c:
code) (
ok:
res unit) :=
ok =
OK tt ->
forall pc i,
c!
pc =
Some i ->
target_bounds (
target td) (
bound td)
pc (
Some i).
Lemma check_code_correct (
td:
UF)
c:
check_code_spec td c (
check_code td c).
Proof.
Theorem branch_target_bounds:
forall f tf pc,
tunnel_function f =
OK tf ->
target_bounds (
branch_target f) (
bound (
branch_target f))
pc (
f.(
fn_code)!
pc).
Proof.
Preservation of semantics
Definition match_prog (
p tp:
program) :=
match_program (
fun _
f tf =>
tunnel_fundef f =
OK tf)
eq p tp.
Lemma transf_program_match:
forall prog tprog,
transf_program prog =
OK tprog ->
match_prog prog tprog.
Proof.
Section PRESERVATION.
Variables prog tprog:
program.
Hypothesis TRANSL:
match_prog prog tprog.
Let ge :=
Genv.globalenv prog.
Let tge :=
Genv.globalenv tprog.
Lemma functions_translated:
forall (
v:
val) (
f:
fundef),
Genv.find_funct ge v =
Some f ->
exists tf,
tunnel_fundef f =
OK tf /\
Genv.find_funct tge v =
Some tf.
Proof.
Lemma function_ptr_translated:
forall v f,
Genv.find_funct_ptr ge v =
Some f ->
exists tf,
Genv.find_funct_ptr tge v =
Some tf /\
tunnel_fundef f =
OK tf.
Proof.
Lemma symbols_preserved s:
Genv.find_symbol tge s =
Genv.find_symbol ge s.
Proof.
Lemma sig_function_preserved:
forall f tf,
tunnel_function f =
OK tf ->
fn_sig tf =
fn_sig f.
Proof.
Lemma sig_preserved:
forall f tf,
tunnel_fundef f =
OK tf ->
funsig tf =
funsig f.
Proof.
intros.
destruct f;
simpl in H.
-
monadInv H.
unfold tunnel_function in EQ.
destruct (
check_included _ _)
in EQ;
try congruence.
monadInv EQ.
auto.
-
monadInv H.
auto.
Qed.
Lemma senv_preserved:
Senv.equiv ge tge.
Proof.
Inductive match_stackframes:
stackframe ->
stackframe ->
Prop :=
|
match_stackframes_intro:
forall res f tf sp pc rs trs
(
TF:
tunnel_function f =
OK tf)
(
RS:
Registers.regs_lessdef rs trs),
match_stackframes
(
Stackframe res f sp pc rs)
(
Stackframe res tf sp (
branch_target f pc)
trs).
Inductive match_states:
state ->
state ->
Prop :=
|
match_states_intro:
forall s ts f tf sp pc rs trs m tm
(
STK:
list_forall2 match_stackframes s ts)
(
TF:
tunnel_function f =
OK tf)
(
RS:
Registers.regs_lessdef rs trs)
(
MEM:
Mem.extends m tm),
match_states
(
State s f sp pc rs m)
(
State ts tf sp (
branch_target f pc)
trs tm)
|
match_states_call:
forall s ts f tf a ta m tm
(
STK:
list_forall2 match_stackframes s ts)
(
TF:
tunnel_fundef f =
OK tf)
(
ARGS:
list_forall2 Val.lessdef a ta)
(
MEM:
Mem.extends m tm),
match_states
(
Callstate s f a m)
(
Callstate ts tf ta tm)
|
match_states_return:
forall s ts v tv m tm
(
STK:
list_forall2 match_stackframes s ts)
(
VAL:
Val.lessdef v tv)
(
MEM:
Mem.extends m tm),
match_states
(
Returnstate s v m)
(
Returnstate ts tv tm).
Definition measure (
st:
state):
nat :=
match st with
|
State s f sp pc rs m =>
bound (
branch_target f)
pc
|
Callstate s f v m => 0
|
Returnstate s v m => 0
end.
Lemma transf_initial_states:
forall s1:
state,
initial_state prog s1 ->
exists s2:
state,
initial_state tprog s2 /\
match_states s1 s2.
Proof.
Lemma transf_final_states:
forall (
s1 :
state)
(
s2 :
state) (
r :
Integers.Int.int),
match_states s1 s2 ->
final_state s1 r ->
final_state s2 r.
Proof.
Lemma tunnel_function_unfold:
forall f tf pc,
tunnel_function f =
OK tf ->
(
fn_code tf) !
pc =
option_map (
tunnel_instr (
branch_target f)) (
fn_code f) !
pc.
Proof.
Lemma reglist_lessdef:
forall (
rs trs:
Registers.Regmap.t val) (
args:
list Registers.reg),
regs_lessdef rs trs ->
Val.lessdef_list (
rs##
args) (
trs##
args).
Proof.
intros. induction args; simpl; constructor.
apply H. apply IHargs.
Qed.
Lemma instruction_type_preserved:
forall (
f tf:
function) (
pc:
node) (
i ti:
instruction)
(
TF:
tunnel_function f =
OK tf)
(
FATPC: (
fn_code f) !
pc =
Some i)
(
NOTINOP:
forall s,
i <>
Inop s)
(
NOTICOND:
forall cond args ifso ifnot info,
i <>
Icond cond args ifso ifnot info)
(
NOTIASSERT:
forall cond args ifso,
i <>
Iassert cond args ifso)
(
TI:
ti =
tunnel_instr (
branch_target f)
i),
(
fn_code tf) ! (
branch_target f pc) =
Some ti.
Proof.
Lemma find_function_translated:
forall ros rs trs fd,
regs_lessdef rs trs ->
find_function ge ros rs =
Some fd ->
exists tfd,
tunnel_fundef fd =
OK tfd /\
find_function tge ros trs =
Some tfd.
Proof.
Lemma list_forall2_lessdef_rs:
forall rs trs args,
regs_lessdef rs trs ->
list_forall2 Val.lessdef rs ##
args trs ##
args.
Proof.
intros rs trs args LD.
exploit (
reglist_lessdef rs trs args).
apply LD.
induction args;
simpl;
intros H;
try constructor;
inv H.
apply H3.
apply IHargs.
apply H5.
Qed.
Lemma fn_stacksize_preserved:
forall f tf
(
TF:
tunnel_function f =
OK tf),
fn_stacksize f =
fn_stacksize tf.
Proof.
Lemma regs_setres_lessdef:
forall res vres tvres rs trs,
regs_lessdef rs trs ->
Val.lessdef vres tvres ->
regs_lessdef (
regmap_setres res vres rs) (
regmap_setres res tvres trs).
Proof.
Lemma regmap_optget_lessdef:
forall or rs trs,
regs_lessdef rs trs ->
Val.lessdef (
regmap_optget or Vundef rs) (
regmap_optget or Vundef trs).
Proof.
Lemma tunnel_fundef_Internal:
forall (
f:
function) (
tf:
fundef)
(
TF:
tunnel_fundef (
Internal f) =
OK tf),
exists (
tf':
function),
tf = (
Internal tf') /\
tunnel_function f =
OK tf'.
Proof.
intros f tf.
unfold tunnel_fundef.
simpl.
intro H.
monadInv H.
exists x.
split.
reflexivity.
apply EQ.
Qed.
Lemma tunnel_fundef_External:
forall (
ef:
external_function) (
tf:
fundef)
(
TF:
tunnel_fundef (
External ef) =
OK tf),
tf = (
External ef).
Proof.
intros f tf.
unfold tunnel_fundef.
simpl.
intro H.
monadInv H.
reflexivity.
Qed.
Lemma fn_entrypoint_preserved:
forall f tf
(
TF:
tunnel_function f =
OK tf),
fn_entrypoint tf =
branch_target f (
fn_entrypoint f).
Proof.
Lemma init_regs_lessdef:
forall f tf args targs
(
ARGS:
list_forall2 Val.lessdef args targs)
(
TF:
tunnel_function f =
OK tf),
regs_lessdef (
init_regs args (
fn_params f)) (
init_regs targs (
fn_params tf)).
Proof.
Lemma lessdef_forall2_list:
forall args ta,
list_forall2 Val.lessdef args ta ->
Val.lessdef_list args ta.
Proof.
Lemma tunnel_step_correct:
forall st1 t st2,
step ge st1 t st2 ->
forall st1' (
MS:
match_states st1 st1'),
(
exists st2',
step tge st1' t st2' /\
match_states st2 st2')
\/ (
measure st2 <
measure st1 /\
t =
E0 /\
match_states st2 st1')%
nat.
Proof.
Theorem transf_program_correct:
forward_simulation (
RTL.semantics prog) (
RTL.semantics tprog).
Proof.
End PRESERVATION.